These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 31317118)
1. Segmentation of Glomeruli Within Trichrome Images Using Deep Learning. Kannan S; Morgan LA; Liang B; Cheung MG; Lin CQ; Mun D; Nader RG; Belghasem ME; Henderson JM; Francis JM; Chitalia VC; Kolachalama VB Kidney Int Rep; 2019 Jul; 4(7):955-962. PubMed ID: 31317118 [TBL] [Abstract][Full Text] [Related]
2. A U-Net based framework to quantify glomerulosclerosis in digitized PAS and H&E stained human tissues. Gallego J; Swiderska-Chadaj Z; Markiewicz T; Yamashita M; Gabaldon MA; Gertych A Comput Med Imaging Graph; 2021 Apr; 89():101865. PubMed ID: 33548823 [TBL] [Abstract][Full Text] [Related]
3. An image inpainting-based data augmentation method for improved sclerosed glomerular identification performance with the segmentation model EfficientNetB3-Unet. He S; Zou Y; Li B; Peng F; Lu X; Guo H; Tan X; Chen Y Sci Rep; 2024 Jan; 14(1):1033. PubMed ID: 38200109 [TBL] [Abstract][Full Text] [Related]
4. Glomerulosclerosis identification in whole slide images using semantic segmentation. Bueno G; Fernandez-Carrobles MM; Gonzalez-Lopez L; Deniz O Comput Methods Programs Biomed; 2020 Feb; 184():105273. PubMed ID: 31891905 [TBL] [Abstract][Full Text] [Related]
5. A Deep Learning-Based Approach for Glomeruli Instance Segmentation from Multistained Renal Biopsy Pathologic Images. Jiang L; Chen W; Dong B; Mei K; Zhu C; Liu J; Cai M; Yan Y; Wang G; Zuo L; Shi H Am J Pathol; 2021 Aug; 191(8):1431-1441. PubMed ID: 34294192 [TBL] [Abstract][Full Text] [Related]
6. Deep learning-based glomerulus detection and classification with generative morphology augmentation in renal pathology images. Juang CF; Chuang YW; Lin GW; Chung IF; Lo YC Comput Med Imaging Graph; 2024 Jul; 115():102375. PubMed ID: 38599040 [TBL] [Abstract][Full Text] [Related]
7. Deep Learning-Based Histopathologic Assessment of Kidney Tissue. Hermsen M; de Bel T; den Boer M; Steenbergen EJ; Kers J; Florquin S; Roelofs JJTH; Stegall MD; Alexander MP; Smith BH; Smeets B; Hilbrands LB; van der Laak JAWM J Am Soc Nephrol; 2019 Oct; 30(10):1968-1979. PubMed ID: 31488607 [TBL] [Abstract][Full Text] [Related]
8. Semi-Supervised Segmentation of Renal Pathology: An Alternative to Manual Segmentation and Input to Deep Learning Training. Kline A; Chung HJ; Rahmani W; Chun J Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2688-2691. PubMed ID: 34891805 [TBL] [Abstract][Full Text] [Related]
9. Automated identification of glomeruli and synchronised review of special stains in renal biopsies by machine learning and slide registration: a cross-institutional study. Wilbur DC; Smith ML; Cornell LD; Andryushkin A; Pettus JR Histopathology; 2021 Oct; 79(4):499-508. PubMed ID: 33813779 [TBL] [Abstract][Full Text] [Related]
10. Deep Learning Global Glomerulosclerosis in Transplant Kidney Frozen Sections. Marsh JN; Matlock MK; Kudose S; Liu TC; Stappenbeck TS; Gaut JP; Swamidass SJ IEEE Trans Med Imaging; 2018 Dec; 37(12):2718-2728. PubMed ID: 29994669 [TBL] [Abstract][Full Text] [Related]
11. Deep learning segmentation of glomeruli on kidney donor frozen sections. Li X; Davis RC; Xu Y; Wang Z; Souma N; Sotolongo G; Bell J; Ellis M; Howell D; Shen X; Lafata KJ; Barisoni L J Med Imaging (Bellingham); 2021 Nov; 8(6):067501. PubMed ID: 34950750 [No Abstract] [Full Text] [Related]
12. Region-Based Convolutional Neural Nets for Localization of Glomeruli in Trichrome-Stained Whole Kidney Sections. Bukowy JD; Dayton A; Cloutier D; Manis AD; Staruschenko A; Lombard JH; Solberg Woods LC; Beard DA; Cowley AW J Am Soc Nephrol; 2018 Aug; 29(8):2081-2088. PubMed ID: 29921718 [No Abstract] [Full Text] [Related]
13. Automated assessment of glomerulosclerosis and tubular atrophy using deep learning. Salvi M; Mogetta A; Gambella A; Molinaro L; Barreca A; Papotti M; Molinari F Comput Med Imaging Graph; 2021 Jun; 90():101930. PubMed ID: 33964790 [TBL] [Abstract][Full Text] [Related]
15. Development and evaluation of deep learning-based segmentation of histologic structures in the kidney cortex with multiple histologic stains. Jayapandian CP; Chen Y; Janowczyk AR; Palmer MB; Cassol CA; Sekulic M; Hodgin JB; Zee J; Hewitt SM; O'Toole J; Toro P; Sedor JR; Barisoni L; Madabhushi A; Kidney Int; 2021 Jan; 99(1):86-101. PubMed ID: 32835732 [TBL] [Abstract][Full Text] [Related]
16. The Application of Digital Pathology to Improve Accuracy in Glomerular Enumeration in Renal Biopsies. Rosenberg AZ; Palmer M; Merlino L; Troost JP; Gasim A; Bagnasco S; Avila-Casado C; Johnstone D; Hodgin JB; Conway C; Gillespie BW; Nast CC; Barisoni L; Hewitt SM PLoS One; 2016; 11(6):e0156441. PubMed ID: 27310011 [TBL] [Abstract][Full Text] [Related]
17. Association of Pathological Fibrosis With Renal Survival Using Deep Neural Networks. Kolachalama VB; Singh P; Lin CQ; Mun D; Belghasem ME; Henderson JM; Francis JM; Salant DJ; Chitalia VC Kidney Int Rep; 2018 Mar; 3(2):464-475. PubMed ID: 29725651 [TBL] [Abstract][Full Text] [Related]
18. Cascaded deep learning-based auto-segmentation for head and neck cancer patients: Organs at risk on T2-weighted magnetic resonance imaging. Korte JC; Hardcastle N; Ng SP; Clark B; Kron T; Jackson P Med Phys; 2021 Dec; 48(12):7757-7772. PubMed ID: 34676555 [TBL] [Abstract][Full Text] [Related]
19. Automated segmentation of cell membranes to evaluate HER2 status in whole slide images using a modified deep learning network. Khameneh FD; Razavi S; Kamasak M Comput Biol Med; 2019 Jul; 110():164-174. PubMed ID: 31163391 [TBL] [Abstract][Full Text] [Related]
20. Classification of renal biopsy direct immunofluorescence image using multiple attention convolutional neural network. Zhang L; Li M; Wu Y; Hao F; Wang C; Han W; Niu D; Zheng W Comput Methods Programs Biomed; 2022 Feb; 214():106532. PubMed ID: 34852936 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]