These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 31317169)
1. Binary polymer brush patterns from facile initiator stickiness for cell culturing. Chen L; Li P; Lu X; Wang S; Zheng Z Faraday Discuss; 2019 Oct; 219(0):189-202. PubMed ID: 31317169 [TBL] [Abstract][Full Text] [Related]
2. Effects of Grafting Density and Film Thickness on the Adhesion of Staphylococcus epidermidis to Poly(2-hydroxy ethyl methacrylate) and Poly(poly(ethylene glycol)methacrylate) Brushes. Ibanescu SA; Nowakowska J; Khanna N; Landmann R; Klok HA Macromol Biosci; 2016 May; 16(5):676-85. PubMed ID: 26757483 [TBL] [Abstract][Full Text] [Related]
3. Protein-resistant polyurethane by sequential grafting of poly(2-hydroxyethyl methacrylate) and poly(oligo(ethylene glycol) methacrylate) via surface-initiated ATRP. Jin Z; Feng W; Zhu S; Sheardown H; Brash JL J Biomed Mater Res A; 2010 Dec; 95(4):1223-32. PubMed ID: 20939048 [TBL] [Abstract][Full Text] [Related]
4. Micro- and nanostructured poly[oligo(ethylene glycol)methacrylate] brushes grown from photopatterned halogen initiators by atom transfer radical polymerization. Ahmad SA; Leggett GJ; Hucknall A; Chilkoti A Biointerphases; 2011 Mar; 6(1):8-15. PubMed ID: 21428690 [TBL] [Abstract][Full Text] [Related]
5. Optimization of Aqueous SI-ATRP Grafting of Poly(Oligo(Ethylene Glycol) Methacrylate) Brushes from Benzyl Chloride Macroinitiator Surfaces. Rodda AE; Ercole F; Nisbet DR; Forsythe JS; Meagher L Macromol Biosci; 2015 Jun; 15(6):799-811. PubMed ID: 25689676 [TBL] [Abstract][Full Text] [Related]
6. Long-range interactions between protein-coated particles and POEGMA brush layers in a serum environment. Wang Z; Luan Y; Gan T; Gong X; Chen H; Ngai T Colloids Surf B Biointerfaces; 2017 Feb; 150():279-287. PubMed ID: 28341156 [TBL] [Abstract][Full Text] [Related]
7. Atom transfer radical polymerization to fabricate monodisperse poly[glycidyl methacrylate-co-poly (ethylene glycol) methacrylate] microspheres and its application for protein affinity purification. Yu L; Shi ZZ; Li CM J Colloid Interface Sci; 2015 Sep; 453():151-158. PubMed ID: 25982938 [TBL] [Abstract][Full Text] [Related]
8. Stratified polymer brushes from microcontact printing of polydopamine initiator on polymer brush surfaces. Wei Q; Yu B; Wang X; Zhou F Macromol Rapid Commun; 2014 Jun; 35(11):1046-54. PubMed ID: 24648357 [TBL] [Abstract][Full Text] [Related]
9. Facile Fabrication of Hierarchically Thermoresponsive Binary Polymer Pattern for Controlled Cell Adhesion. Hou J; Cui L; Chen R; Xu X; Chen J; Yin L; Liu J; Shi Q; Yin J Macromol Rapid Commun; 2018 Mar; 39(6):e1700572. PubMed ID: 29314369 [TBL] [Abstract][Full Text] [Related]
10. Stability and nonfouling properties of poly(poly(ethylene glycol) methacrylate) brushes under cell culture conditions. Tugulu S; Klok HA Biomacromolecules; 2008 Mar; 9(3):906-12. PubMed ID: 18260637 [TBL] [Abstract][Full Text] [Related]
11. Nanoscale Characteristics and Antimicrobial Properties of (SI-ATRP)-Seeded Polymer Brush Surfaces. Oh YJ; Khan ES; Campo AD; Hinterdorfer P; Li B ACS Appl Mater Interfaces; 2019 Aug; 11(32):29312-29319. PubMed ID: 31259525 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of Block Copolymer Brush by RAFT and Click Chemistry and Its Self-Assembly as a Thin Film. Thankappan H; Semsarilar M; Li S; Chang Y; Bouyer D; Quemener D Molecules; 2020 Oct; 25(20):. PubMed ID: 33080832 [TBL] [Abstract][Full Text] [Related]
13. Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization. Barbey R; Klok HA Langmuir; 2010 Dec; 26(23):18219-30. PubMed ID: 21062007 [TBL] [Abstract][Full Text] [Related]
14. Protein microarrays based on polymer brushes prepared via surface-initiated atom transfer radical polymerization. Barbey R; Kauffmann E; Ehrat M; Klok HA Biomacromolecules; 2010 Dec; 11(12):3467-79. PubMed ID: 21090572 [TBL] [Abstract][Full Text] [Related]
15. Fibroblast adhesion on ECM-derived peptide modified poly(2-hydroxyethyl methacrylate) brushes: ligand co-presentation and 3D-localization. Desseaux S; Klok HA Biomaterials; 2015 Mar; 44():24-35. PubMed ID: 25617123 [TBL] [Abstract][Full Text] [Related]
16. Micropatterning of polymer brushes: grafting from dewetting polymer films for biological applications. Telford AM; Meagher L; Glattauer V; Gengenbach TR; Easton CD; Neto C Biomacromolecules; 2012 Sep; 13(9):2989-96. PubMed ID: 22881125 [TBL] [Abstract][Full Text] [Related]
17. Surface modification of glycidyl-containing poly(methyl methacrylate) microchips using surface-initiated atom-transfer radical polymerization. Sun X; Liu J; Lee ML Anal Chem; 2008 Feb; 80(3):856-63. PubMed ID: 18179249 [TBL] [Abstract][Full Text] [Related]
18. Completely aqueous procedure for the growth of polymer brushes on polymeric substrates. Jain P; Dai J; Grajales S; Saha S; Baker GL; Bruening ML Langmuir; 2007 Nov; 23(23):11360-5. PubMed ID: 17918978 [TBL] [Abstract][Full Text] [Related]
19. Regulating the migration of smooth muscle cells by a vertically distributed poly(2-hydroxyethyl methacrylate) gradient on polymer brushes covalently immobilized with RGD peptides. Wu S; Du W; Duan Y; Zhang D; Liu Y; Wu B; Zou X; Ouyang H; Gao C Acta Biomater; 2018 Jul; 75():75-92. PubMed ID: 29857130 [TBL] [Abstract][Full Text] [Related]
20. Poly(ethylene glycol)-block-poly(glycidyl methacrylate) with oligoamine side chains as efficient gene vectors. Ma M; Li F; Chen FJ; Cheng SX; Zhuo RX Macromol Biosci; 2010 Feb; 10(2):183-91. PubMed ID: 19771543 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]