BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31317295)

  • 1. Finite element evaluation of artery damage in deployment of polymeric stent with pre- and post-dilation.
    He R; Zhao LG; Silberschmidt VV; Liu Y; Vogt F
    Biomech Model Mechanobiol; 2020 Feb; 19(1):47-60. PubMed ID: 31317295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patient-specific modelling of stent overlap: Lumen gain, tissue damage and in-stent restenosis.
    He R; Zhao LG; Silberschmidt VV; Liu Y; Vogt F
    J Mech Behav Biomed Mater; 2020 Sep; 109():103836. PubMed ID: 32543402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational analysis of mechanical stress-strain interaction of a bioresorbable scaffold with blood vessel.
    Schiavone A; Abunassar C; Hossainy S; Zhao LG
    J Biomech; 2016 Sep; 49(13):2677-2683. PubMed ID: 27318369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic evaluation of long-term in-stent restenosis based on models of tissue damage and growth.
    He R; Zhao L; Silberschmidt VV; Liu Y
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1425-1446. PubMed ID: 31912322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue prolapse and stresses in stented coronary arteries: A computer model for multi-layer atherosclerotic plaque.
    Hajiali Z; Dabagh M; Debusschere N; De Beule M; Jalali P
    Comput Biol Med; 2015 Nov; 66():39-46. PubMed ID: 26378501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical Interaction of an Expanding Coiled Stent with a Plaque-Containing Arterial Wall: A Finite Element Analysis.
    Welch TR; Eberhart RC; Banerjee S; Chuong CJ
    Cardiovasc Eng Technol; 2016 Mar; 7(1):58-68. PubMed ID: 26621671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Computational Study of Mechanical Performance of Bioresorbable Polymeric Stents with Design Variations.
    Qiu TY; Zhao LG; Song M
    Cardiovasc Eng Technol; 2019 Mar; 10(1):46-60. PubMed ID: 30536211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An experimental-nonlinear finite element study of a balloon expandable stent inside a realistic stenotic human coronary artery to investigate plaque and arterial wall injury.
    Karimi A; Razaghi R; Shojaei A; Navidbakhsh M
    Biomed Tech (Berl); 2015 Dec; 60(6):593-602. PubMed ID: 25870956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of balloon pre-dilation on performance of self-expandable nitinol stent in femoropopliteal artery.
    He R; Zhao L; Silberschmidt VV
    Biomech Model Mechanobiol; 2023 Feb; 22(1):189-205. PubMed ID: 36282361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vulnerability analysis on the interaction between Asymmetric stent and arterial layer.
    Syaifudin A; Ariatedja JB; Kaelani Y; Takeda R; Sasaki K
    Biomed Mater Eng; 2019; 30(3):309-322. PubMed ID: 31127751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of material, coating, design and plaque composition on stent deployment inside a stenotic artery--finite element simulation.
    Schiavone A; Zhao LG; Abdel-Wahab AA
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():479-88. PubMed ID: 25063145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of plaque lengths on stent surface roughness.
    Syaifudin A; Takeda R; Sasaki K
    Biomed Mater Eng; 2015; 25(2):189-202. PubMed ID: 25813957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical performances of balloon post-dilation for improving stent expansion in calcified coronary artery: Computational and experimental investigations.
    Dong P; Mozafari H; Lee J; Gharaibeh Y; Zimin VN; Dallan LAP; Bezerra HG; Wilson DL; Gu L
    J Mech Behav Biomed Mater; 2021 Sep; 121():104609. PubMed ID: 34082181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patient-specific Finite Element Model of Coronary Artery Stenting.
    Razaghi R; Karimi A; Taheri RA
    Curr Pharm Des; 2018; 24(37):4492-4502. PubMed ID: 30514186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influences of plaque eccentricity and composition on the stent-plaque-artery interaction during stent implantation.
    Wei L; Chen Q; Li Z
    Biomech Model Mechanobiol; 2019 Feb; 18(1):45-56. PubMed ID: 30097815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A nonlinear finite element simulation of balloon expandable stent for assessment of plaque vulnerability inside a stenotic artery.
    Karimi A; Navidbakhsh M; Yamada H; Razaghi R
    Med Biol Eng Comput; 2014 Jul; 52(7):589-99. PubMed ID: 24888756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element analysis of the implantation of a balloon-expandable stent in a stenosed artery.
    Liang DK; Yang DZ; Qi M; Wang WQ
    Int J Cardiol; 2005 Oct; 104(3):314-8. PubMed ID: 16186062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemodynamic alternations following stent deployment and post-dilation in a heavily calcified coronary artery: In silico and ex-vivo approaches.
    Gamage PT; Dong P; Lee J; Gharaibeh Y; Zimin VN; Dallan LAP; Bezerra HG; Wilson DL; Gu L
    Comput Biol Med; 2021 Dec; 139():104962. PubMed ID: 34715552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational study of stent performance by considering vessel anisotropy and residual stresses.
    Schiavone A; Zhao LG
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():307-16. PubMed ID: 26952428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the stent expansion in a stenosed artery using finite element method: application to stent versus stent study.
    Imani SM; Goudarzi AM; Ghasemi SE; Kalani A; Mahdinejad J
    Proc Inst Mech Eng H; 2014 Oct; 228(10):996-1004. PubMed ID: 25406228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.