These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 31317775)

  • 1. Impaired auditory processing and neural representation of speech in noise among symptomatic post-concussion adults.
    Vander Werff KR; Rieger B
    Brain Inj; 2019; 33(10):1320-1331. PubMed ID: 31317775
    [No Abstract]   [Full Text] [Related]  

  • 2. Brainstem Evoked Potential Indices of Subcortical Auditory Processing After Mild Traumatic Brain Injury.
    Vander Werff KR; Rieger B
    Ear Hear; 2017; 38(4):e200-e214. PubMed ID: 28319479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of broadband noise on cortical evoked auditory responses at different loudness levels in young adults.
    Sharma M; Purdy SC; Munro KJ; Sawaya K; Peter V
    Neuroreport; 2014 Mar; 25(5):312-9. PubMed ID: 24323122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of hearing impairment and age on electrophysiological and behavioral measures of speech in noise.
    Koerner TK; Zhang Y
    Hear Res; 2018 Dec; 370():130-142. PubMed ID: 30388571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Signal to Noise Ratio on Cortical Auditory-Evoked Potentials Elicited to Speech Stimuli in Infants and Adults With Normal Hearing.
    Small SA; Sharma M; Bradford M; Mandikal Vasuki PR
    Ear Hear; 2018; 39(2):305-317. PubMed ID: 28863034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of background noise on inter-trial phase coherence and auditory N1-P2 responses to speech stimuli.
    Koerner TK; Zhang Y
    Hear Res; 2015 Oct; 328():113-9. PubMed ID: 26276419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the cognitive consequences of mild traumatic brain injury and concussion by using electrophysiology.
    Gosselin N; Bottari C; Chen JK; Huntgeburth SC; De Beaumont L; Petrides M; Cheung B; Ptito A
    Neurosurg Focus; 2012 Dec; 33(6):E7: 1-7. PubMed ID: 23199430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological Evidence of Auditory and Cognitive Processing Deficits in Parkinson Disease.
    Folmer RL; Vachhani JJ; Riggins A
    Biomed Res Int; 2021; 2021():6610908. PubMed ID: 34239927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Informational Masking Effects on Neural Encoding of Stimulus Onset and Acoustic Change.
    Niemczak CE; Vander Werff KR
    Ear Hear; 2019; 40(1):156-167. PubMed ID: 29782442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hearing with Two Ears: Evidence for Cortical Binaural Interaction during Auditory Processing.
    Henkin Y; Yaar-Soffer Y; Givon L; Hildesheimer M
    J Am Acad Audiol; 2015 Apr; 26(4):384-92. PubMed ID: 25879242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auditory cortical activity to different voice onset times in cochlear implant users.
    Han JH; Zhang F; Kadis DS; Houston LM; Samy RN; Smith ML; Dimitrijevic A
    Clin Neurophysiol; 2016 Feb; 127(2):1603-1617. PubMed ID: 26616545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical auditory evoked potential in aging: effects of stimulus intensity and noise.
    Kim JR; Ahn SY; Jeong SW; Kim LS; Park JS; Chung SH; Oh MK
    Otol Neurotol; 2012 Sep; 33(7):1105-12. PubMed ID: 22892802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Varying effect of noise on sound onset and acoustic change evoked auditory cortical N1 responses evoked by a vowel-vowel stimulus.
    Yaralı M
    Int J Psychophysiol; 2020 Jun; 152():36-43. PubMed ID: 32302643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Informational Masking Effects of Similarity and Uncertainty on Early and Late Stages of Auditory Cortical Processing.
    Niemczak CE; Vander Werff KR
    Ear Hear; 2021; 42(4):1006-1023. PubMed ID: 33416259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory evoked brain potentials as markers of chronic effects of mild traumatic brain injury in mid-life.
    Manning Franke L; Perera RA; Aygemang AA; Marquardt CA; Teich C; Sponheim SR; Duncan CC; Walker WC
    Clin Neurophysiol; 2021 Dec; 132(12):2979-2988. PubMed ID: 34715422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interhemispheric differences in P1 and N1 amplitude in EEG and MEG differ across older individuals with a concussion compared with age-matched controls.
    Desjardins M; Drisdelle BL; Lefebvre C; Gagnon JF; De Beaumont L; Jolicoeur P
    Psychophysiology; 2021 Mar; 58(3):e13751. PubMed ID: 33347633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What subcortical-cortical relationships tell us about processing speech in noise.
    Parbery-Clark A; Marmel F; Bair J; Kraus N
    Eur J Neurosci; 2011 Feb; 33(3):549-57. PubMed ID: 21255123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Longitudinal study of a NoGo-P3 event-related potential component following mild traumatic brain injury in adults.
    Candrian G; Müller A; Dall'Acqua P; Kompatsiari K; Baschera GM; Mica L; Simmen HP; Glaab R; Fandino J; Schwendinger M; Meier C; Ulbrich EJ; Johannes S
    Ann Phys Rehabil Med; 2018 Jan; 61(1):18-26. PubMed ID: 28882543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theta, beta and gamma rate modulations in the developing auditory system.
    Vanvooren S; Hofmann M; Poelmans H; Ghesquière P; Wouters J
    Hear Res; 2015 Sep; 327():153-62. PubMed ID: 26117409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the relationship between auditory cognition and speech intelligibility in cochlear implant users: An ERP study.
    Finke M; Büchner A; Ruigendijk E; Meyer M; Sandmann P
    Neuropsychologia; 2016 Jul; 87():169-181. PubMed ID: 27212057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.