These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31317999)

  • 1. Facile synthesis of urchin-like LaWO
    Sun L; Shi Y; Tang M; Wang D; Tian Y; Li J
    Nanoscale; 2019 Aug; 11(30):14237-14241. PubMed ID: 31317999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembled WO3-x hierarchical nanostructures for photothermal therapy with a 915 nm laser rather than the common 980 nm laser.
    Li B; Zhang Y; Zou R; Wang Q; Zhang B; An L; Yin F; Hua Y; Hu J
    Dalton Trans; 2014 Apr; 43(16):6244-50. PubMed ID: 24598863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the NIR photoabsorption of CuWO
    Wen M; Wang S; Jiang R; Wang Y; Wang Z; Yu W; Geng P; Xia J; Li M; Chen Z
    Biomater Sci; 2019 Nov; 7(11):4651-4660. PubMed ID: 31464303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Bi
    Wang S; Wang H; Song C; Li Z; Wang Z; Xu H; Yu W; Peng C; Li M; Chen Z
    Nanoscale; 2019 Aug; 11(32):15326-15338. PubMed ID: 31386732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous phase preparation of ultrasmall MoSe2 nanodots for efficient photothermal therapy of cancer cells.
    Yuwen L; Zhou J; Zhang Y; Zhang Q; Shan J; Luo Z; Weng L; Teng Z; Wang L
    Nanoscale; 2016 Feb; 8(5):2720-6. PubMed ID: 26758473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lentinan in-situ coated tungsten oxide nanorods as a nanotherapeutic agent for low power density photothermal cancer therapy.
    Tian Y; Yi W; Bai L; Zhang P; Si J; Hou X; Deng Y; Hou J
    Int J Biol Macromol; 2019 Sep; 137():904-911. PubMed ID: 31252011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale Metal-Organic Frameworks Decorated with Graphene Oxide for Magnetic Resonance Imaging Guided Photothermal Therapy.
    Meng J; Chen X; Tian Y; Li Z; Zheng Q
    Chemistry; 2017 Dec; 23(69):17521-17530. PubMed ID: 29047182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near infrared photothermal conversion materials: mechanism, preparation, and photothermal cancer therapy applications.
    Li J; Zhang W; Ji W; Wang J; Wang N; Wu W; Wu Q; Hou X; Hu W; Li L
    J Mater Chem B; 2021 Oct; 9(38):7909-7926. PubMed ID: 34611678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable flower-like manganese for synergistic photothermal and photodynamic therapy applications.
    Chen W; Yan Y; Han R; Hu J; Hou Y; Tang K
    Photochem Photobiol Sci; 2021 Jan; 20(1):153-160. PubMed ID: 33721245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous Pt Nanoparticles with High Near-Infrared Photothermal Conversion Efficiencies for Photothermal Therapy.
    Zhu XM; Wan HY; Jia H; Liu L; Wang J
    Adv Healthc Mater; 2016 Dec; 5(24):3165-3172. PubMed ID: 27860435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper Manganese Sulfide Nanoplates: A New Two-Dimensional Theranostic Nanoplatform for MRI/MSOT Dual-Modal Imaging-Guided Photothermal Therapy in the Second Near-Infrared Window.
    Ke K; Yang W; Xie X; Liu R; Wang LL; Lin WW; Huang G; Lu CH; Yang HH
    Theranostics; 2017; 7(19):4763-4776. PubMed ID: 29187902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sub-100 nm hollow Au-Ag alloy urchin-shaped nanostructure with ultrahigh density of nanotips for photothermal cancer therapy.
    Liu Z; Cheng L; Zhang L; Yang Z; Liu Z; Fang J
    Biomaterials; 2014 Apr; 35(13):4099-107. PubMed ID: 24518389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Efficient Vacancy-Driven Photothermal Therapy Mediated by Ultrathin MnO
    Wang L; Guan S; Weng Y; Xu SM; Lu H; Meng X; Zhou S
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6267-6275. PubMed ID: 30672683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo near-infrared photothermal therapy and computed tomography imaging of cancer cells using novel tungsten-based theranostic probe.
    Liu J; Han J; Kang Z; Golamaully R; Xu N; Li H; Han X
    Nanoscale; 2014 Jun; 6(11):5770-6. PubMed ID: 24736832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interlayer expansion of 2D MoS
    Fu C; Tan L; Ren X; Wu Q; Shao H; Ren J; Zhao Y; Meng X
    Chem Commun (Camb); 2018 Dec; 54(99):13989-13992. PubMed ID: 30480683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infra-red absorption.
    Guo C; Yin S; Yu H; Liu S; Dong Q; Goto T; Zhang Z; Li Y; Sato T
    Nanoscale; 2013 Jul; 5(14):6469-78. PubMed ID: 23743996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygenic Enrichment in Hybrid Ruthenium Sulfide Nanoclusters for an Optimized Photothermal Effect.
    Zhu H; Li Z; Ye E; Leong DT
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):60351-60361. PubMed ID: 34874695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ce6-Modified Carbon Dots for Multimodal-Imaging-Guided and Single-NIR-Laser-Triggered Photothermal/Photodynamic Synergistic Cancer Therapy by Reduced Irradiation Power.
    Sun S; Chen J; Jiang K; Tang Z; Wang Y; Li Z; Liu C; Wu A; Lin H
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5791-5803. PubMed ID: 30648846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cu7.2S4 nanocrystals: a novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells.
    Li B; Wang Q; Zou R; Liu X; Xu K; Li W; Hu J
    Nanoscale; 2014 Mar; 6(6):3274-82. PubMed ID: 24509646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bifunctional Carbon-Dot-WS
    Nandi S; Bhunia SK; Zeiri L; Pour M; Nachman I; Raichman D; Lellouche JM; Jelinek R
    Chemistry; 2017 Jan; 23(4):963-969. PubMed ID: 27813177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.