These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31318464)

  • 21. A comparison of kinetic and regulatory properties of the tetrameric and dimeric forms of wild-type and Thr427-->Pro mutant human phenylalanine hydroxylase: contribution of the flexible hinge region Asp425-Gln429 to the tetramerization and cooperative substrate binding.
    Bjørgo E; de Carvalho RM; Flatmark T
    Eur J Biochem; 2001 Feb; 268(4):997-1005. PubMed ID: 11179966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydroxylation of 4-methylphenylalanine by rat liver phenylalanine hydroxylase.
    Siegmund HU; Kaufman S
    J Biol Chem; 1991 Feb; 266(5):2903-10. PubMed ID: 1993664
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selectivity and affinity determinants for ligand binding to the aromatic amino acid hydroxylases.
    Teigen K; McKinney JA; Haavik J; Martínez A
    Curr Med Chem; 2007; 14(4):455-67. PubMed ID: 17305546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo metabolism of deutero-L-phenylalanine and deutero-L-tyrosine in normal and in various tumor-bearing rats.
    Ziegler I; Kokolis N; Stichler W
    Cancer Biochem Biophys; 1977; 2(2):71-7. PubMed ID: 616324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence that phenylalanine may not provide the full needs for aromatic amino acids in children.
    Hsu JW; Ball RO; Pencharz PB
    Pediatr Res; 2007 Mar; 61(3):361-5. PubMed ID: 17314698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The active site residue tyrosine 325 influences iron binding and coupling efficiency in human phenylalanine hydroxylase.
    Miranda FF; Kolberg M; Andersson KK; Geraldes CF; Martínez A
    J Inorg Biochem; 2005 Jun; 99(6):1320-8. PubMed ID: 15917086
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of tyrosine through phenylalanine hydroxylation bypasses the intrinsic feedback inhibition in Escherichia coli.
    Huang J; Lin Y; Yuan Q; Yan Y
    J Ind Microbiol Biotechnol; 2015 Apr; 42(4):655-9. PubMed ID: 25645094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic Mechanism and Intrinsic Rate Constants for the Reaction of a Bacterial Phenylalanine Hydroxylase.
    Subedi BP; Fitzpatrick PF
    Biochemistry; 2016 Dec; 55(49):6848-6857. PubMed ID: 27951651
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeled ligand-protein complexes elucidate the origin of substrate specificity and provide insight into catalytic mechanisms of phenylalanine hydroxylase and tyrosine hydroxylase.
    Maass A; Scholz J; Moser A
    Eur J Biochem; 2003 Mar; 270(6):1065-75. PubMed ID: 12631267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction energies between tetrahydrobiopterin analogues and aromatic residues in tyrosine hydroxylase and phenylalanine hydroxylase.
    Hofto ME; Cross JN; Cafiero M
    J Phys Chem B; 2007 Aug; 111(32):9651-4. PubMed ID: 17658743
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ectoine hydroxylase displays selective trans-3-hydroxylation activity towards L-proline.
    Hara R; Nishikawa T; Okuhara T; Koketsu K; Kino K
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5689-5698. PubMed ID: 31106391
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional analysis, using in vitro mutagenesis, of amino acids located in the phenylalanine hydroxylase active site.
    Jennings IG; Cotton RG; Kobe B
    Arch Biochem Biophys; 2000 Dec; 384(2):238-44. PubMed ID: 11368310
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activation of phenylalanine hydroxylase by phenylalanine does not require binding in the active site.
    Roberts KM; Khan CA; Hinck CS; Fitzpatrick PF
    Biochemistry; 2014 Dec; 53(49):7846-53. PubMed ID: 25453233
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The tyrosine-dependent oxidation of tetrahydropterins by lysolecithin-activated rat liver phenylalanine hydroxylase.
    Davis MD; Kaufman S
    J Biol Chem; 1988 Nov; 263(33):17312-6. PubMed ID: 3182848
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrophobic side chain requirements for lauric acid and progesterone hydroxylation at amino acid 113 in cytochrome P450 2C2, a potential determinant of substrate specificity.
    Straub P; Johnson EF; Kemper B
    Arch Biochem Biophys; 1993 Nov; 306(2):521-7. PubMed ID: 8215458
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis for substrate recognition and specificity in aklavinone-11-hydroxylase from rhodomycin biosynthesis.
    Lindqvist Y; Koskiniemi H; Jansson A; Sandalova T; Schnell R; Liu Z; Mäntsälä P; Niemi J; Schneider G
    J Mol Biol; 2009 Nov; 393(4):966-77. PubMed ID: 19744497
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phenylalanine hydroxylase from Chromobacterium violaceum. Uncoupled oxidation of tetrahydropterin and the role of iron in hyroxylation.
    Chen D; Frey PA
    J Biol Chem; 1998 Oct; 273(40):25594-601. PubMed ID: 9748224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phenylalanine hydroxylation across the kidney in humans rapid communication.
    Tessari P; Deferrari G; Robaudo C; Vettore M; Pastorino N; De Biasi L; Garibotto G
    Kidney Int; 1999 Dec; 56(6):2168-72. PubMed ID: 10594792
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The interaction of aromatic amino acids with rat liver phenylalanine hydroxylase.
    Phillips RS; Parniak MA; Kaufman S
    J Biol Chem; 1984 Jan; 259(1):271-7. PubMed ID: 6706937
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phenylalanine analogues as inhibitors of phenylalanine-hydroxylase from rat liver. New conclusions concerning kinetic behaviors of the enzyme.
    Dhondt JL; Dautrevaux M; Biserte G; Farriaux JP
    Biochimie; 1978; 60(8):787-94. PubMed ID: 728481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.