BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31318487)

  • 1. A Fuzzy-Based Risk Assessment Framework for Autonomous Underwater Vehicle Under-Ice Missions.
    Loh TY; Brito MP; Bose N; Xu J; Tenekedjiev K
    Risk Anal; 2019 Dec; 39(12):2744-2765. PubMed ID: 31318487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fuzzy System Dynamics Risk Analysis (FuSDRA) of Autonomous Underwater Vehicle Operations in the Antarctic.
    Loh TY; Brito MP; Bose N; Xu J; Tenekedjiev K
    Risk Anal; 2020 Apr; 40(4):818-841. PubMed ID: 31799748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human Error in Autonomous Underwater Vehicle Deployment: A System Dynamics Approach.
    Loh TY; Brito MP; Bose N; Xu J; Tenekedjiev K
    Risk Anal; 2020 Jun; 40(6):1258-1278. PubMed ID: 32144834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Risk analysis for autonomous underwater vehicle operations in extreme environments.
    Brito MP; Griffiths G; Challenor P
    Risk Anal; 2010 Dec; 30(12):1771-88. PubMed ID: 20731790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Probabilistic and Highly Efficient Topology Control Algorithm for Underwater Cooperating AUV Networks.
    Li N; Cürüklü B; Bastos J; Sucasas V; Fernandez JAS; Rodriguez J
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28471387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual Navigation for Recovering an AUV by Another AUV in Shallow Water.
    Liu S; Xu H; Lin Y; Gao L
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31010050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fault-Tolerant Control of Autonomous Underwater Vehicle Actuators Based on Takagi and Sugeno Fuzzy and Pseudo-Inverse Quadratic Programming under Constraints.
    Zhang Z; Wu Y; Zhou Y; Hu D
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lagrange tracking-based long-term drift trajectory prediction method for Autonomous Underwater Vehicle.
    Zheng S; Zhang M; Zhang J; Li J
    Math Biosci Eng; 2023 Nov; 20(12):21075-21097. PubMed ID: 38124588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fisher-Information-Matrix-Based USBL Cooperative Location in USV-AUV Networks.
    Wang Z; Xu J; Feng Y; Wang Y; Xie G; Hou X; Men W; Ren Y
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reinforcement Learning-Based Multi-AUV Adaptive Trajectory Planning for Under-Ice Field Estimation.
    Wang C; Wei L; Wang Z; Song M; Mahmoudian N
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30424017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data-Gathering Scheme Using AUVs in Large-Scale Underwater Sensor Networks: A Multihop Approach.
    Khan JU; Cho HS
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27706042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lagrangian coherent structure assisted path planning for transoceanic autonomous underwater vehicle missions.
    Ramos AG; García-Garrido VJ; Mancho AM; Wiggins S; Coca J; Glenn S; Schofield O; Kohut J; Aragon D; Kerfoot J; Haskins T; Miles T; Haldeman C; Strandskov N; Allsup B; Jones C; Shapiro J
    Sci Rep; 2018 Mar; 8(1):4575. PubMed ID: 29545527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Convolutional Neural Network for In Situ AUV Thruster Health Monitoring Using Acoustic Signals.
    Yeo SJ; Choi WS; Hong SY; Song JH
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-Dimensional Frontier-Based Viewpoint Generation for Exploring and Mapping Underwater Environments.
    Vidal E; Palomeras N; Istenič K; Hernández JD; Carreras M
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30934639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. I-AUV Docking and Panel Intervention at Sea.
    Palomeras N; Peñalver A; Massot-Campos M; Negre PL; Fernández JJ; Ridao P; Sanz PJ; Oliver-Codina G
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27754348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AUV Path Planning Considering Ocean Current Disturbance Based on Cloud Desktop Technology.
    Hu S; Xiao S; Yang J; Zhang Z; Zhang K; Zhu Y; Zhang Y
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Vectorial Propulsion System and Trajectory Control Designs for Improved AUV Mission Autonomy.
    Masmitja I; Gonzalez J; Galarza C; Gomariz S; Aguzzi J; Del Rio J
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29673224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Improved Localization Method for the Transition between Autonomous Underwater Vehicle Homing and Docking.
    Lin R; Zhang F; Li D; Lin M; Zhou G; Yang C
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33918285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active Fault Localization of Actuators on Torpedo-Shaped Autonomous Underwater Vehicles.
    Liu F; Long Y; Luo J; Pu H; Duan C; Zhong S
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33440899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the impact of sewage discharges on the marine environment with a lightweight AUV.
    Bonin-Font F; Lalucat J; Oliver-Codina G; Massot-Campos M; Font EG; Carrasco PLN
    Mar Pollut Bull; 2018 Oct; 135():714-722. PubMed ID: 30301090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.