These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31318525)

  • 1. Atomistic Mechanism of Stress-Induced Combined Slip and Diffusion in Sub-5 Nanometer-Sized Ag Nanowires.
    Sun S; Kong D; Li D; Liao X; Liu D; Mao S; Zhang Z; Wang L; Han X
    ACS Nano; 2019 Aug; 13(8):8708-8716. PubMed ID: 31318525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation of the deformation mechanism from dislocation-mediated slip to homogeneous slip in silver nanowires.
    Feng J; Kizuka T
    J Nanosci Nanotechnol; 2013 Jan; 13(1):394-400. PubMed ID: 23646744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface Energy Driven Liquid-Drop-Like Pseudoelastic Behaviors and In Situ Atomistic Mechanisms of Small-Sized Face-Centered-Cubic Metals.
    Kong D; Xin T; Sun S; Lu Y; Shu X; Long H; Chen Y; Teng J; Zhang Z; Wang L; Han X
    Nano Lett; 2019 Jan; 19(1):292-298. PubMed ID: 30543297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Room-temperature superplasticity in Au nanowires and their atomistic mechanisms.
    Liu P; Wang L; Yue Y; Song S; Wang X; Reddy KM; Liao X; Zhang Z; Chen M; Han X
    Nanoscale; 2019 May; 11(18):8727-8735. PubMed ID: 31033993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consecutive crystallographic reorientations and superplasticity in body-centered cubic niobium nanowires.
    Wang Q; Wang J; Li J; Zhang Z; Mao SX
    Sci Adv; 2018 Jul; 4(7):eaas8850. PubMed ID: 29984304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uniaxial tension-induced fracture in gold nanowires with the dependence on size and atomic vacancies.
    Wang F; Dai Y; Zhao J; Li Q
    Phys Chem Chem Phys; 2014 Dec; 16(45):24716-26. PubMed ID: 25315454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition of Deformation Mechanisms in Single-Crystalline Metallic Nanowires.
    Yin S; Cheng G; Richter G; Gao H; Zhu Y
    ACS Nano; 2019 Aug; 13(8):9082-9090. PubMed ID: 31305984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-ideal strength in gold nanowires achieved through microstructural design.
    Deng C; Sansoz F
    ACS Nano; 2009 Oct; 3(10):3001-8. PubMed ID: 19743833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deformation of Copper Nanowire under Coupled Tension-Torsion Loading.
    Lu H; Dong B; Zhang J; Lü C; Zhan H
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten.
    Wang J; Zeng Z; Weinberger CR; Zhang Z; Zhu T; Mao SX
    Nat Mater; 2015 Jun; 14(6):594-600. PubMed ID: 25751073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A molecular dynamics study on the mechanical properties of Fe-Ni alloy nanowires and their temperature dependence.
    Chen J; Li P; Lin EE
    RSC Adv; 2020 Nov; 10(66):40084-40091. PubMed ID: 35520820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-Dependent Superplasticity and Strengthening in CoNiCrFeMn High Entropy Alloy Nanowires Using Atomistic Simulations.
    Tripathi PK; Chiu YC; Bhowmick S; Lo YC
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural evolution and mechanical stabilities of head-to-side nanowelding of Cu-Ag bimetallic nanowires
    Fang R; Li Z; Guo L; Li H
    Phys Chem Chem Phys; 2023 Feb; 25(8):6424-6435. PubMed ID: 36779832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-Dependent Mechanical Properties of Amorphous SiO
    Sun K; Chen J; Wu B; Wang L; Fang L
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33198310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-Condition-Dependent Deformation Mechanisms in Lead Nanocrystals.
    Zhang H; Wang W; Sun J; Zhong L; He L; Sun L
    Research (Wash D C); 2022; 2022():9834636. PubMed ID: 36016690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superplastic Creep of Metal Nanowires from Rate-Dependent Plasticity Transition.
    Tao W; Cao P; Park HS
    ACS Nano; 2018 May; 12(5):4984-4992. PubMed ID: 29708727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrete shear band plasticity through dislocation activities in body-centered cubic tungsten nanowires.
    Wang J; Wang Y; Cai W; Li J; Zhang Z; Mao SX
    Sci Rep; 2018 Mar; 8(1):4574. PubMed ID: 29545583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain controlled fatigue response of large-scale perfect and defect nickel nanowires: A molecular dynamics study.
    Yedla N
    J Mol Graph Model; 2021 Jul; 106():107885. PubMed ID: 33984817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam.
    Xu S; Tian M; Wang J; Xu J; Redwing JM; Chan MH
    Small; 2005 Dec; 1(12):1221-9. PubMed ID: 17193423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformation from slip to plastic flow deformation mechanism during tensile deformation of zirconium nanocontacts.
    Yamada K; Kizuka T
    Sci Rep; 2017 Feb; 7():42901. PubMed ID: 28218244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.