These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31318564)

  • 1. Feeling Your Neighbors across the Walls: How Interpore Ionic Interactions Affect Capacitive Energy Storage.
    Kondrat S; Vasilyev OA; Kornyshev AA
    J Phys Chem Lett; 2019 Aug; 10(16):4523-4527. PubMed ID: 31318564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Charge Storage in Ionic Liquids-Filled Nanopores: Insight from a Computational Cyclic Voltammetry Study.
    He Y; Huang J; Sumpter BG; Kornyshev AA; Qiao R
    J Phys Chem Lett; 2015 Jan; 6(1):22-30. PubMed ID: 26263086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes.
    Vatamanu J; Vatamanu M; Bedrov D
    ACS Nano; 2015 Jun; 9(6):5999-6017. PubMed ID: 26038979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic liquids in conducting nanoslits: how important is the range of the screened electrostatic interactions?
    Groda Y; Dudka M; Oshanin G; Kornyshev AA; Kondrat S
    J Phys Condens Matter; 2022 May; 34(26):. PubMed ID: 35358962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-file charge storage in conducting nanopores.
    Lee AA; Kondrat S; Kornyshev AA
    Phys Rev Lett; 2014 Jul; 113(4):048701. PubMed ID: 25105658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Horn-like Pore Entrance Boosts Charging Dynamics and Charge Storage of Nanoporous Supercapacitors.
    Mo T; Peng J; Dai W; Chen M; Presser V; Feng G
    ACS Nano; 2023 Aug; 17(15):14974-14980. PubMed ID: 37498344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressing a spring: what does it take to maximize the energy storage in nanoporous supercapacitors?
    Kondrat S; Kornyshev AA
    Nanoscale Horiz; 2016 Jan; 1(1):45-52. PubMed ID: 32260601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes?
    Lian C; Liu H; Henderson D; Wu J
    J Phys Condens Matter; 2016 Oct; 28(41):414005. PubMed ID: 27546561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoporous carbon for electrochemical capacitive energy storage.
    Shao H; Wu YC; Lin Z; Taberna PL; Simon P
    Chem Soc Rev; 2020 May; 49(10):3005-3039. PubMed ID: 32285082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion Structure Transition Enhances Charging Dynamics in Subnanometer Pores.
    Mo T; Bi S; Zhang Y; Presser V; Wang X; Gogotsi Y; Feng G
    ACS Nano; 2020 Feb; 14(2):2395-2403. PubMed ID: 31999427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ising models of charge storage in multifile metallic nanopores.
    Zaboronsky AO; Kornyshev AA
    J Phys Condens Matter; 2020 Jun; 32(27):275201. PubMed ID: 32254047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge Me Slowly, I Am in a Hurry: Optimizing Charge-Discharge Cycles in Nanoporous Supercapacitors.
    Breitsprecher K; Holm C; Kondrat S
    ACS Nano; 2018 Oct; 12(10):9733-9741. PubMed ID: 30088913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical Insights into the Structures and Capacitive Performances of Confined Ionic Liquids.
    Yang J; Ding Y; Lian C; Ying S; Liu H
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32213943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capacitive energy storage in single-file pores: Exactly solvable models and simulations.
    Verkholyak T; Kuzmak A; Kondrat S
    J Chem Phys; 2021 Nov; 155(17):174112. PubMed ID: 34742202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of pore size and surface charge on Na ion storage in carbon nanopores.
    Karatrantos A; Cai Q
    Phys Chem Chem Phys; 2016 Nov; 18(44):30761-30769. PubMed ID: 27796383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations.
    Kondrat S; Georgi N; Fedorov MV; Kornyshev AA
    Phys Chem Chem Phys; 2011 Jun; 13(23):11359-66. PubMed ID: 21566824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-state NMR studies of supercapacitors.
    Griffin JM; Forse AC; Grey CP
    Solid State Nucl Magn Reson; 2016; 74-75():16-35. PubMed ID: 26974032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How to speed up ion transport in nanopores.
    Breitsprecher K; Janssen M; Srimuk P; Mehdi BL; Presser V; Holm C; Kondrat S
    Nat Commun; 2020 Nov; 11(1):6085. PubMed ID: 33257681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superionic liquids in conducting nanoslits: A variety of phase transitions and ensuing charging behavior.
    Dudka M; Kondrat S; BĂ©nichou O; Kornyshev AA; Oshanin G
    J Chem Phys; 2019 Nov; 151(18):184105. PubMed ID: 31731872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.