These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 31319006)
1. Biomimetic synthesis of Mg-substituted hydroxyapatite nanocomposites and three-dimensional printing of composite scaffolds for bone regeneration. Chen S; Shi Y; Zhang X; Ma J J Biomed Mater Res A; 2019 Nov; 107(11):2512-2521. PubMed ID: 31319006 [TBL] [Abstract][Full Text] [Related]
2. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo. Wu M; Wu P; Xiao L; Zhao Y; Yan F; Liu X; Xie Y; Zhang C; Chen Y; Cai L Int J Biol Macromol; 2020 Nov; 162():1627-1641. PubMed ID: 32781127 [TBL] [Abstract][Full Text] [Related]
3. Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering. Lu HT; Lu TW; Chen CH; Mi FL Int J Biol Macromol; 2019 May; 128():973-984. PubMed ID: 30738901 [TBL] [Abstract][Full Text] [Related]
4. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Kim HW; Kim HE; Salih V Biomaterials; 2005 Sep; 26(25):5221-30. PubMed ID: 15792549 [TBL] [Abstract][Full Text] [Related]
5. Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications. Dittler ML; Unalan I; Grünewald A; Beltrán AM; Grillo CA; Destch R; Gonzalez MC; Boccaccini AR Colloids Surf B Biointerfaces; 2019 Oct; 182():110346. PubMed ID: 31325780 [TBL] [Abstract][Full Text] [Related]
6. Biological Response to Macroporous Chitosan-Agarose Bone Scaffolds Comprising Mg- and Zn-Doped Nano-Hydroxyapatite. Kazimierczak P; Kolmas J; Przekora A Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31390753 [TBL] [Abstract][Full Text] [Related]
7. Biomimetic composite scaffolds based mineralization of hydroxyapatite on electrospun calcium-containing poly(vinyl alcohol) nanofibers. Chang W; Mu X; Zhu X; Ma G; Li C; Xu F; Nie J Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4369-76. PubMed ID: 23910355 [TBL] [Abstract][Full Text] [Related]
8. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168 [TBL] [Abstract][Full Text] [Related]
9. In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen-hydroxyapatite layered scaffolds. Zhou J; Xu C; Wu G; Cao X; Zhang L; Zhai Z; Zheng Z; Chen X; Wang Y Acta Biomater; 2011 Nov; 7(11):3999-4006. PubMed ID: 21757035 [TBL] [Abstract][Full Text] [Related]
10. [Proliferation and differentiation of MC 3T3-E1 cells cultured on nanohydroxyapatite/chitosan composite scaffolds]. Kong LJ; Ao Q; Xi J; Zhang L; Gong YD; Zhao NM; Zhang XF Sheng Wu Gong Cheng Xue Bao; 2007 Mar; 23(2):262-7. PubMed ID: 17460899 [TBL] [Abstract][Full Text] [Related]
11. [Osteogenesis effect of dynamic mechanical loading on MC3T3-E1 cells in three-dimensional printing biomimetic composite scaffolds]. Song X; Li H; Li R; Yuan Q; Liu Y; Cheng W; Zhang X Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Apr; 32(4):448-456. PubMed ID: 29806303 [TBL] [Abstract][Full Text] [Related]
12. Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering. Chen P; Liu L; Pan J; Mei J; Li C; Zheng Y Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():325-335. PubMed ID: 30678918 [TBL] [Abstract][Full Text] [Related]
13. Three-Dimensional Printing of Nano Hydroxyapatite/Poly(ester urea) Composite Scaffolds with Enhanced Bioactivity. Yu J; Xu Y; Li S; Seifert GV; Becker ML Biomacromolecules; 2017 Dec; 18(12):4171-4183. PubMed ID: 29020441 [TBL] [Abstract][Full Text] [Related]
14. Porous collagen-hydroxyapatite scaffolds with mesenchymal stem cells for bone regeneration. Ning L; Malmström H; Ren YF J Oral Implantol; 2015 Feb; 41(1):45-9. PubMed ID: 23574526 [TBL] [Abstract][Full Text] [Related]
15. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES]. Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872 [TBL] [Abstract][Full Text] [Related]
16. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. Maji K; Dasgupta S; Kundu B; Bissoyi A J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156 [TBL] [Abstract][Full Text] [Related]
17. Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs. Peng H; Yin Z; Liu H; Chen X; Feng B; Yuan H; Su B; Ouyang H; Zhang Y Nanotechnology; 2012 Dec; 23(48):485102. PubMed ID: 23128604 [TBL] [Abstract][Full Text] [Related]
18. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan. Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039 [TBL] [Abstract][Full Text] [Related]
19. Osteogenic differentiation and bone regeneration of iPSC-MSCs supported by a biomimetic nanofibrous scaffold. Xie J; Peng C; Zhao Q; Wang X; Yuan H; Yang L; Li K; Lou X; Zhang Y Acta Biomater; 2016 Jan; 29():365-379. PubMed ID: 26441129 [TBL] [Abstract][Full Text] [Related]
20. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]