These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 31319055)

  • 1. Comparison of composition-gradient sedimentation equilibrium and composition-gradient static light scattering as techniques for quantitative characterization of biomolecular interactions: A case study.
    Arisaka F; Niimura Y; Minton AP
    Anal Biochem; 2019 Oct; 583():113339. PubMed ID: 31319055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of self-association and heteroassociation of bacterial cell division proteins FtsZ and ZipA in solution by composition gradient-static light scattering.
    Martos A; Alfonso C; López-Navajas P; Ahijado-Guzmn R; Mingorance J; Minton AP; Rivas G
    Biochemistry; 2010 Dec; 49(51):10780-7. PubMed ID: 21082789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The NADH oxidase-Prx system in Amphibacillus xylanus.
    Niimura Y
    Subcell Biochem; 2007; 44():195-205. PubMed ID: 18084894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [NADH oxidase (peroxiredoxin reductase) in hydroperoxide scavenging system].
    Niimura Y
    Tanpakushitsu Kakusan Koso; 2001 May; 46(6):719-25. PubMed ID: 11360496
    [No Abstract]   [Full Text] [Related]  

  • 5. Characterizing Reversible Protein Association at Moderately High Concentration Via Composition-Gradient Static Light Scattering.
    Some D; Pollastrini J; Cao S
    J Pharm Sci; 2016 Aug; 105(8):2310-8. PubMed ID: 27364461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Equilibrium analyses of the active-site asymmetry in enterococcal NADH oxidase: role of the cysteine-sulfenic acid redox center.
    Mallett TC; Parsonage D; Claiborne A
    Biochemistry; 1999 Mar; 38(10):3000-11. PubMed ID: 10074352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composition gradient static light scattering: a new technique for rapid detection and quantitative characterization of reversible macromolecular hetero-associations in solution.
    Attri AK; Minton AP
    Anal Biochem; 2005 Nov; 346(1):132-8. PubMed ID: 16188220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The NADH oxidase from the thermoacidophilic archaea Acidianus ambivalens: isolation and physicochemical characterisation.
    Gomes CM; Teixeira M
    Biochem Biophys Res Commun; 1998 Feb; 243(2):412-5. PubMed ID: 9480823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of alkyl hydroperoxide reductase and two water-forming NADH oxidases from Bacillus cereus ATCC 14579.
    Wang L; Chong H; Jiang R
    Appl Microbiol Biotechnol; 2012 Dec; 96(5):1265-73. PubMed ID: 22311647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and biochemical characterization of a new NADH oxidase from Lactobacillus brevis.
    Hummel W; Riebel B
    Biotechnol Lett; 2003 Jan; 25(1):51-4. PubMed ID: 12882306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallization and preliminary X-ray diffraction studies of a NADH oxidase from Thermus thermophilus HB8.
    Erdmann H; Hecht HJ; Park HJ; Sprinzl M; Schomburg D; Schmid RD
    J Mol Biol; 1993 Apr; 230(3):1086-8. PubMed ID: 8478921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the N-terminal sequence of NADH oxidase from Thermus aquaticus with those of other flavoenzymes.
    Toomey D; Mayhew SG; Lanzetti AJ; Geoghegan KF
    Biochem Soc Trans; 1996 Feb; 24(1):25S. PubMed ID: 8674678
    [No Abstract]   [Full Text] [Related]  

  • 13. Rapid quantitative characterization of protein interactions by composition gradient static light scattering.
    Kameyama K; Minton AP
    Biophys J; 2006 Mar; 90(6):2164-9. PubMed ID: 16387762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of an NADH oxidase from Eubacterium ramulus.
    Herles C; Braune A; Blaut M
    Arch Microbiol; 2002 Jul; 178(1):71-4. PubMed ID: 12070772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The NADH oxidase activity of the plasma membrane of synaptosomes is a major source of superoxide anion and is inhibited by peroxynitrite.
    Martín-Romero FJ; Gutiérrez-Martín Y; Henao F; Gutiérrez-Merino C
    J Neurochem; 2002 Aug; 82(3):604-14. PubMed ID: 12153484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of a tumor-associated NADH oxidase (tNOX) from the HeLa cell surface.
    Yantiri F; Morré DJ
    Arch Biochem Biophys; 2001 Jul; 391(2):149-59. PubMed ID: 11437345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unusual effect of salts on the homodimeric structure of NADH oxidase from Thermus thermophilus in acidic pH.
    Stupák M; Zoldák G; Musatov A; Sprinzl M; Sedlák E
    Biochim Biophys Acta; 2006 Jan; 1764(1):129-37. PubMed ID: 16330265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-dependent self-association of zinc-free insulin characterized by concentration-gradient static light scattering.
    Attri AK; Fernández C; Minton AP
    Biophys Chem; 2010 May; 148(1-3):28-33. PubMed ID: 20202737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular cloning and nucleotide sequence of the gene encoding a H2O2-forming NADH oxidase from the extreme thermophilic Thermus thermophilus HB8 and its expression in Escherichia coli.
    Park HJ; Kreutzer R; Reiser CO; Sprinzl M
    Eur J Biochem; 1993 Feb; 211(3):909. PubMed ID: 8436145
    [No Abstract]   [Full Text] [Related]  

  • 20. Hydrogen peroxide-forming NADH oxidase belonging to the peroxiredoxin oxidoreductase family: existence and physiological role in bacteria.
    Nishiyama Y; Massey V; Takeda K; Kawasaki S; Sato J; Watanabe T; Niimura Y
    J Bacteriol; 2001 Apr; 183(8):2431-8. PubMed ID: 11274101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.