BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 31319136)

  • 1. Stage-specific functional relationships between Tub1 and Tub2 beta-tubulins in the wheat scab fungus Fusarium graminearum.
    Wang H; Chen D; Li C; Tian N; Zhang J; Xu JR; Wang C
    Fungal Genet Biol; 2019 Nov; 132():103251. PubMed ID: 31319136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sexual specific functions of Tub1 beta-tubulins require stage-specific RNA processing and expression in Fusarium graminearum.
    Chen D; Wu C; Hao C; Huang P; Liu H; Bian Z; Xu JR
    Environ Microbiol; 2018 Nov; 20(11):4009-4021. PubMed ID: 30307105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FgKin1 kinase localizes to the septal pore and plays a role in hyphal growth, ascospore germination, pathogenesis, and localization of Tub1 beta-tubulins in Fusarium graminearum.
    Luo Y; Zhang H; Qi L; Zhang S; Zhou X; Zhang Y; Xu JR
    New Phytol; 2014 Dec; 204(4):943-54. PubMed ID: 25078365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. α1-Tubulin FaTuA1 plays crucial roles in vegetative growth and conidiation in Fusarium asiaticum.
    Hu W; Zhang X; Chen X; Zheng J; Yin Y; Ma Z
    Res Microbiol; 2015 Apr; 166(3):132-42. PubMed ID: 25660319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleoside Diphosphate Kinase FgNdpk Is Required for DON Production and Pathogenicity by Regulating the Growth and Toxisome Formation of
    Mao X; Li L; Abubakar YS; Li Y; Luo Z; Chen M; Zheng W; Wang Z; Zheng H
    J Agric Food Chem; 2024 May; 72(17):9637-9646. PubMed ID: 38642053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Golgin Protein RUD3 Regulates Fusarium graminearum Growth and Virulence.
    Wang C; Wang Y; Zhang L; Yin Z; Liang Y; Chen L; Zou S; Dong H
    Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33452023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two Cdc2 Kinase Genes with Distinct Functions in Vegetative and Infectious Hyphae in Fusarium graminearum.
    Liu H; Zhang S; Ma J; Dai Y; Li C; Lyu X; Wang C; Xu JR
    PLoS Pathog; 2015 Jun; 11(6):e1004913. PubMed ID: 26083253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in Fusarium graminearum.
    Hu S; Zhou X; Gu X; Cao S; Wang C; Xu JR
    Mol Plant Microbe Interact; 2014 Jun; 27(6):557-66. PubMed ID: 24450772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum.
    Jiang C; Zhang C; Wu C; Sun P; Hou R; Liu H; Wang C; Xu JR
    Environ Microbiol; 2016 Nov; 18(11):3689-3701. PubMed ID: 26940955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Q-SNARE protein FgSyn8 plays important role in growth, DON production and pathogenicity of Fusarium graminearum.
    Adnan M; Islam W; Noman A; Hussain A; Anwar M; Khan MU; Akram W; Ashraf MF; Raza MF
    Microb Pathog; 2020 Mar; 140():103948. PubMed ID: 31874229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ELP3 is involved in sexual and asexual development, virulence, and the oxidative stress response in Fusarium graminearum.
    Lee Y; Min K; Son H; Park AR; Kim JC; Choi GJ; Lee YW
    Mol Plant Microbe Interact; 2014 Dec; 27(12):1344-55. PubMed ID: 25083910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Roles of α
    Zhu Y; Zhang Y; Duan Y; Shi D; Hou Y; Song X; Wang J; Zhou M
    Appl Environ Microbiol; 2021 Sep; 87(20):e0096721. PubMed ID: 34378994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel transcriptional factor important for pathogenesis and ascosporogenesis in Fusarium graminearum.
    Wang Y; Liu W; Hou Z; Wang C; Zhou X; Jonkers W; Ding S; Kistler HC; Xu JR
    Mol Plant Microbe Interact; 2011 Jan; 24(1):118-28. PubMed ID: 20795857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The HDF1 histone deacetylase gene is important for conidiation, sexual reproduction, and pathogenesis in Fusarium graminearum.
    Li Y; Wang C; Liu W; Wang G; Kang Z; Kistler HC; Xu JR
    Mol Plant Microbe Interact; 2011 Apr; 24(4):487-96. PubMed ID: 21138346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FgEaf6 regulates virulence, asexual/sexual development and conidial septation in Fusarium graminearum.
    Qin J; Wu M; Zhou S
    Curr Genet; 2020 Jun; 66(3):517-529. PubMed ID: 31728616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The transcription factor FgCrz1A is essential for fungal development, virulence, deoxynivalenol biosynthesis and stress responses in Fusarium graminearum.
    Chen L; Tong Q; Zhang C; Ding K
    Curr Genet; 2019 Feb; 65(1):153-166. PubMed ID: 29947970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hexokinase plays a critical role in deoxynivalenol (DON) production and fungal development in Fusarium graminearum.
    Zhang L; Li B; Zhang Y; Jia X; Zhou M
    Mol Plant Pathol; 2016 Jan; 17(1):16-28. PubMed ID: 25808544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FgSKN7 and FgATF1 have overlapping functions in ascosporogenesis, pathogenesis and stress responses in Fusarium graminearum.
    Jiang C; Zhang S; Zhang Q; Tao Y; Wang C; Xu JR
    Environ Microbiol; 2015 Apr; 17(4):1245-60. PubMed ID: 25040476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cyclase-associated protein FgCap1 has both protein kinase A-dependent and -independent functions during deoxynivalenol production and plant infection in Fusarium graminearum.
    Yin T; Zhang Q; Wang J; Liu H; Wang C; Xu JR; Jiang C
    Mol Plant Pathol; 2018 Mar; 19(3):552-563. PubMed ID: 28142217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional characterization of Rho family small GTPases in Fusarium graminearum.
    Zhang C; Wang Y; Wang J; Zhai Z; Zhang L; Zheng W; Zheng W; Yu W; Zhou J; Lu G; Shim WB; Wang Z
    Fungal Genet Biol; 2013 Dec; 61():90-9. PubMed ID: 24055721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.