BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31319324)

  • 1. Flexible, multichannel cuff electrode for selective electrical stimulation of the mouse trigeminal nerve.
    Bong J; Ness JP; Zeng W; Kim H; Novello J; Pisaniello J; Lake WB; Ludwig KA; Williams JC; Ma Z; Suminski AJ
    Biosens Bioelectron; 2019 Oct; 142():111493. PubMed ID: 31319324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing cortical responses evoked by electrical stimulation of the mouse infraorbital nerve.
    Suminski AJ; Ness JP; Zeng W; Novello J; Brodnick SK; Pisaniello J; Dingle AM; Poore SO; Lake WB; Williams JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4756-4759. PubMed ID: 30441412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible multichannel vagus nerve electrode for stimulation and recording for heart failure treatment.
    Xue N; Martinez ID; Sun J; Cheng Y; Liu C
    Biosens Bioelectron; 2018 Jul; 112():114-119. PubMed ID: 29702382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of pentylenetetrazole-induced seizure activity in awake rats by seizure-triggered trigeminal nerve stimulation.
    Fanselow EE; Reid AP; Nicolelis MA
    J Neurosci; 2000 Nov; 20(21):8160-8. PubMed ID: 11050139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cuff and sieve electrode (CASE): The combination of neural electrodes for bi-directional peripheral nerve interfacing.
    Kim H; Dingle AM; Ness JP; Baek DH; Bong J; Lee IK; Shulzhenko NO; Zeng W; Israel JS; Pisaniello JA; Millevolte AXT; Park DW; Suminski AJ; Jung YH; Williams JC; Poore SO; Ma Z
    J Neurosci Methods; 2020 Apr; 336():108602. PubMed ID: 31981569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies for interfacing with the trigeminal nerves in rodents for bioelectric medicine.
    Dingle A; Zeng W; Ness JP; Albano N; Minor RL; Feldman C; Austin M; Brodnick SK; Shulzhenko N; Sanchez R; Lake WB; Williams JC; Poore SO; Suminski AJ
    J Neurosci Methods; 2019 Aug; 324():108321. PubMed ID: 31229585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical and Electrophysiological Performance of Platinum Electrodes Within the Ninety-Nine-Electrode Stimulating Nerve Cuff.
    Pečlin P; Mehle A; Karpe B; Rozman J
    Artif Organs; 2015 Oct; 39(10):886-96. PubMed ID: 26471140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural stimulation and recording electrodes.
    Cogan SF
    Annu Rev Biomed Eng; 2008; 10():275-309. PubMed ID: 18429704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical performance of platinum electrodes within the multi-electrode spiral nerve cuff.
    Rozman J; Pečlin P; Mehle A; Šala M
    Australas Phys Eng Sci Med; 2014 Sep; 37(3):525-33. PubMed ID: 24938675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Capacitive" pulse shapes for platinum cuff electrodes.
    Woods VM; Triantis IF; Agathos C; Toumazou C
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5408-11. PubMed ID: 22255560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human nerve stimulation thresholds and selectivity using a multi-contact nerve cuff electrode.
    Polasek KH; Hoyen HA; Keith MW; Tyler DJ
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):76-82. PubMed ID: 17436879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nerve cuff electrode using embedded magnets and its application to hypoglossal nerve stimulation.
    Seo J; Wee JH; Park JH; Park P; Kim JW; Kim SJ
    J Neural Eng; 2016 Dec; 13(6):066014. PubMed ID: 27762236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a thin-film peripheral nerve cuff electrode.
    Walter JS; McLane J; Cai W; Khan T; Cogan S
    J Spinal Cord Med; 1995 Jan; 18(1):28-32. PubMed ID: 7640971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible IrO
    Sun T; Tsaava T; Peragine J; Crosfield C; Lopez MF; Modi R; Sharma R; Li C; Sohal H; Chang EH; Rieth L
    Acta Biomater; 2023 Mar; 159():394-409. PubMed ID: 36669547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcutaneous Ports for Chronic Nerve Cuff and Intramuscular Electrode Stimulation in Animal Models.
    Heaton JT; Kobler JB; Ottensmeyer MP; Petrillo RH; Tynan MA; Hillman RE; Zeitels SM
    Otolaryngol Head Neck Surg; 2021 Apr; 164(4):821-828. PubMed ID: 32957852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical Neural Stimulation and Simultaneous in Vivo Monitoring with Transparent Graphene Electrode Arrays Implanted in GCaMP6f Mice.
    Park DW; Ness JP; Brodnick SK; Esquibel C; Novello J; Atry F; Baek DH; Kim H; Bong J; Swanson KI; Suminski AJ; Otto KJ; Pashaie R; Williams JC; Ma Z
    ACS Nano; 2018 Jan; 12(1):148-157. PubMed ID: 29253337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-based analysis and design of nerve cuff electrodes for restoring bladder function by selective stimulation of the pudendal nerve.
    Kent AR; Grill WM
    J Neural Eng; 2013 Jun; 10(3):036010. PubMed ID: 23594706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible 3D carbon nanotubes cuff electrodes as a peripheral nerve interface.
    Tian P; Yi W; Chen C; Hu J; Qi J; Zhang B; Cheng MM
    Biomed Microdevices; 2018 Feb; 20(1):21. PubMed ID: 29460230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles.
    Badia J; Boretius T; Andreu D; Azevedo-Coste C; Stieglitz T; Navarro X
    J Neural Eng; 2011 Jun; 8(3):036023. PubMed ID: 21558601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multielectrode nerve cuff stimulation of the median nerve produces selective movements in a raccoon animal model.
    Walter JS; Griffith P; Sweeney J; Scarpine V; Bidnar M; McLane J; Robinson C
    J Spinal Cord Med; 1997 Apr; 20(2):233-43. PubMed ID: 9144615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.