BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31319329)

  • 21. Self-Referenced Smartphone-Based Nanoplasmonic Imaging Platform for Colorimetric Biochemical Sensing.
    Wang X; Chang TW; Lin G; Gartia MR; Liu GL
    Anal Chem; 2017 Jan; 89(1):611-615. PubMed ID: 27976865
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sensing using localised surface plasmon resonance sensors.
    Szunerits S; Boukherroub R
    Chem Commun (Camb); 2012 Sep; 48(72):8999-9010. PubMed ID: 22806135
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hybrid localized surface plasmon resonance and quartz crystal microbalance sensor for label free biosensing.
    Hao D; Hu C; Grant J; Glidle A; Cumming DRS
    Biosens Bioelectron; 2018 Feb; 100():23-27. PubMed ID: 28850824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative study of binding constants from Love wave surface acoustic wave and surface plasmon resonance biosensors using kinetic analysis.
    Lee S; Kim YI; Kim KB
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7319-24. PubMed ID: 24245250
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrasensitive Detection of C-Reactive Protein by a Novel Nanoplasmonic Immunoturbidimetry Assay.
    Dang T; Li Z; Zhao L; Zhang W; Huang L; Meng F; Liu GL; Hu W
    Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36354468
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery.
    Patching SG
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt A):43-55. PubMed ID: 23665295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing.
    Aćimović SS; Kreuzer MP; González MU; Quidant R
    ACS Nano; 2009 May; 3(5):1231-7. PubMed ID: 19385661
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chip-based digital surface plasmon resonance sensing platform for ultrasensitive biomolecular detection.
    Pan MY; Lee KL; Wang L; Wei PK
    Biosens Bioelectron; 2017 May; 91():580-587. PubMed ID: 28088751
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of immunoarrays using a gold grating-based dual mode surface plasmon-coupled emission (SPCE) sensor chip.
    Yuk JS; Gibson GN; Rice JM; Guignon EF; Lynes MA
    Analyst; 2012 Jun; 137(11):2574-81. PubMed ID: 22498719
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Large-area gold nanohole arrays fabricated by one-step method for surface plasmon resonance biochemical sensing.
    Qi H; Niu L; Zhang J; Chen J; Wang S; Yang J; Guo S; Lawson T; Shi B; Song C
    Sci China Life Sci; 2018 Apr; 61(4):476-482. PubMed ID: 29675550
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Homogenous growth of gold nanocrystals for quantification of PSA protein biomarker.
    Cao C; Li X; Lee J; Sim SJ
    Biosens Bioelectron; 2009 Jan; 24(5):1292-7. PubMed ID: 18783934
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantification of Single-Molecule Protein Binding Kinetics in Complex Media with Prism-Coupled Plasmonic Scattering Imaging.
    Zhang P; Ma G; Wan Z; Wang S
    ACS Sens; 2021 Mar; 6(3):1357-1366. PubMed ID: 33720692
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Magnetic field-assisted SPR biosensor based on carboxyl-functionalized graphene oxide sensing film and Fe3O4-hollow gold nanohybrids probe.
    Wu Q; Sun Y; Zhang D; Li S; Wang X; Song D
    Biosens Bioelectron; 2016 Dec; 86():95-101. PubMed ID: 27336617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A method for identifying small molecule aggregators using photonic crystal biosensor microplates.
    Chan LL; Lidstone EA; Finch KE; Heeres JT; Hergenrother PJ; Cunningham BT
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():788-91. PubMed ID: 19964243
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-aligned colocalization of 3D plasmonic nanogap arrays for ultra-sensitive surface plasmon resonance detection.
    Oh Y; Lee W; Kim Y; Kim D
    Biosens Bioelectron; 2014 Jan; 51():401-7. PubMed ID: 24012773
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determining kinetics and affinities of protein interactions using a parallel real-time label-free biosensor, the Octet.
    Abdiche Y; Malashock D; Pinkerton A; Pons J
    Anal Biochem; 2008 Jun; 377(2):209-17. PubMed ID: 18405656
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of Extracellular Vesicles by Surface Plasmon Resonance.
    Im H; Yang K; Lee H; Castro CM
    Methods Mol Biol; 2017; 1660():133-141. PubMed ID: 28828653
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface plasmon resonance biosensing.
    Piliarik M; Vaisocherová H; Homola J
    Methods Mol Biol; 2009; 503():65-88. PubMed ID: 19151937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Urchin-like (gold core)@(platinum shell) nanohybrids: A highly efficient peroxidase-mimetic system for in situ amplified colorimetric immunoassay.
    Gao Z; Xu M; Lu M; Chen G; Tang D
    Biosens Bioelectron; 2015 Aug; 70():194-201. PubMed ID: 25814409
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Semi-continuous, real-time monitoring of protein biomarker using a recyclable surface plasmon resonance sensor.
    Kim DH; Cho IH; Park JN; Paek SH; Cho HM; Paek SH
    Biosens Bioelectron; 2017 Feb; 88():232-239. PubMed ID: 27545847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.