These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 31319508)

  • 41. Magnetic-Map-Matching-Aided Pedestrian Navigation Using Outlier Mitigation Based on Multiple Sensors and Roughness Weighting.
    Kim YH; Choi MJ; Kim EJ; Song JW
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31684139
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Validation of wearable visual feedback for retraining foot progression angle using inertial sensors and an augmented reality headset.
    Karatsidis A; Richards RE; Konrath JM; van den Noort JC; Schepers HM; Bellusci G; Harlaar J; Veltink PH
    J Neuroeng Rehabil; 2018 Aug; 15(1):78. PubMed ID: 30111337
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Method for Autonomous Multi-Motion Modes Recognition and Navigation Optimization for Indoor Pedestrian.
    Wang Z; Xiong Z; Xing L; Ding Y; Sun Y
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808517
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Static and Dynamic Accuracy of an Innovative Miniaturized Wearable Platform for Short Range Distance Measurements for Human Movement Applications.
    Bertuletti S; Cereatti A; Comotti D; Caldara M; Della Croce U
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28672803
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An Enhanced Pedestrian Visual-Inertial SLAM System Aided with Vanishing Point in Indoor Environments.
    Chai W; Li C; Zhang M; Sun Z; Yuan H; Lin F; Li Q
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833504
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Magnetic, Acceleration Fields and Gyroscope Quaternion (MAGYQ)-based attitude estimation with smartphone sensors for indoor pedestrian navigation.
    Renaudin V; Combettes C
    Sensors (Basel); 2014 Dec; 14(12):22864-90. PubMed ID: 25474379
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient Upper Limb Position Estimation Based on Angular Displacement Sensors for Wearable Devices.
    Contreras-González AF; Ferre M; Sánchez-Urán MÁ; Sáez-Sáez FJ; Blaya Haro F
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33198097
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Research on an Improved Method for Foot-Mounted Inertial/Magnetometer Pedestrian-Positioning Based on the Adaptive Gradient Descent Algorithm.
    Wang Q; Yin J; Noureldin A; Iqbal U
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30477156
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pedestrian navigation based on a waist-worn inertial sensor.
    Alvarez JC; Alvarez D; López A; González RC
    Sensors (Basel); 2012; 12(8):10536-49. PubMed ID: 23112614
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Wearable Magneto-Inertial System for Gait Analysis (H-Gait): Validation on Normal Weight and Overweight/Obese Young Healthy Adults.
    Agostini V; Gastaldi L; Rosso V; Knaflitz M; Tadano S
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29065485
    [No Abstract]   [Full Text] [Related]  

  • 51. Robust Pedestrian Dead Reckoning Based on MEMS-IMU for Smartphones.
    Kuang J; Niu X; Chen X
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29724003
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Estimation of Spatio-Temporal Parameters of Gait and Posture of Visually Impaired People Using Wearable Sensors.
    Reyes Leiva KM; Gato MÁC; Olmedo JJS
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420731
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Indoor Trajectory Reconstruction of Walking, Jogging, and Running Activities Based on a Foot-Mounted Inertial Pedestrian Dead-Reckoning System.
    Ceron JD; Martindale CF; López DM; Kluge F; Eskofier BM
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31991597
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced Heuristic Drift Elimination with Adaptive Zero-Velocity Detection and Heading Correction Algorithms for Pedestrian Navigation.
    Zhu R; Wang Y; Yu B; Gan X; Jia H; Wang B
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32053884
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Validation of a model-based inverse kinematics approach based on wearable inertial sensors.
    Tagliapietra L; Modenese L; Ceseracciu E; Mazzà C; Reggiani M
    Comput Methods Biomech Biomed Engin; 2018 Dec; 21(16):834-844. PubMed ID: 30466324
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Global Kalman filter approaches to estimate absolute angles of lower limb segments.
    Nogueira SL; Lambrecht S; Inoue RS; Bortole M; Montagnoli AN; Moreno JC; Rocon E; Terra MH; Siqueira AAG; Pons JL
    Biomed Eng Online; 2017 May; 16(1):58. PubMed ID: 28511658
    [TBL] [Abstract][Full Text] [Related]  

  • 57. On Inertial Body Tracking in the Presence of Model Calibration Errors.
    Miezal M; Taetz B; Bleser G
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27455266
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gravity-Based Methods for Heading Computation in Pedestrian Dead Reckoning.
    Manos A; Klein I; Hazan T
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30866554
    [TBL] [Abstract][Full Text] [Related]  

  • 59. fastSW: Efficient Piecewise Linear Approximation of Quaternion-Based Orientation Sensor Signals for Motion Capturing with Wearable IMUs.
    Grützmacher F; Kempfle J; Van Laerhoven K; Haubelt C
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372419
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors.
    Fantozzi S; Giovanardi A; Borra D; Gatta G
    PLoS One; 2015; 10(9):e0138105. PubMed ID: 26368131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.