BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31319616)

  • 1. The Study of an Ultraviolet Radiation Technique for Removal of the Indoor Air Volatile Organic Compounds and Bioaerosol.
    Liu CY; Tseng CH; Wang HC; Dai CF; Shih YH
    Int J Environ Res Public Health; 2019 Jul; 16(14):. PubMed ID: 31319616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effectiveness of photocatalytic filter for removing volatile organic compounds in the heating, ventilation, and air conditioning system.
    Yu KP; Lee GW; Huang WM; Wu CC; Lou CL; Yang S
    J Air Waste Manag Assoc; 2006 May; 56(5):666-74. PubMed ID: 16739804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indoor levels of volatile organic compounds and formaldehyde from emission sources at elderly care centers in Korea.
    Lee K; Choi JH; Lee S; Park HJ; Oh YJ; Kim GB; Lee WS; Son BS
    PLoS One; 2018; 13(6):e0197495. PubMed ID: 29879122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of ultraviolet light-emitting diode photocatalysis to remove volatile organic compounds from indoor air.
    Sharmin R; Ray MB
    J Air Waste Manag Assoc; 2012 Sep; 62(9):1032-9. PubMed ID: 23019817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of indoor pollutants under UV irradiation by a composite TiO2-zeolite sheet prepared using a papermaking technique.
    Ichiura H; Kitaoka T; Tanaka H
    Chemosphere; 2003 Jan; 50(1):79-83. PubMed ID: 12656232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microalgal biochar assisted simultaneous removal of particulate matter, formaldehyde, and total volatile organic compounds (TVOC's) from indoor air.
    Kumar R; Dalvi V; Pant KK; Malik A
    Chemosphere; 2024 May; 355():141866. PubMed ID: 38565375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Airborne concentrations of volatile organic compounds, formaldehyde and ammonia in Finnish office buildings with suspected indoor air problems.
    Salonen HJ; Pasanen AL; Lappalainen SK; Riuttala HM; Tuomi TM; Pasanen PO; Bäck BC; Reijula KE
    J Occup Environ Hyg; 2009 Mar; 6(3):200-9. PubMed ID: 19152165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors Effecting the Total Volatile Organic Compound (TVOC) Concentrations in Slovak Households.
    Mečiarová Ľ; Vilčeková S; Burdová EK; Kiselák J
    Int J Environ Res Public Health; 2017 Nov; 14(12):. PubMed ID: 29168779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Level and characteristics of indoor air pollutants in a furniture mall in Beijing].
    Jiang CJ; Li SS; Zhang PY; Wang J
    Huan Jing Ke Xue; 2010 Dec; 31(12):2860-5. PubMed ID: 21360872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of PM
    Hwang SH; Roh J; Park WM
    Environ Pollut; 2018 Nov; 242(Pt A):700-708. PubMed ID: 30029169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upper-room ultraviolet germicidal irradiation (UVGI) for air disinfection: a symposium in print.
    Nardell E; Vincent R; Sliney DH
    Photochem Photobiol; 2013; 89(4):764-9. PubMed ID: 23683092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tricrystalline TiO2 with enhanced photocatalytic activity and durability for removing volatile organic compounds from indoor air.
    Chen K; Zhu L; Yang K
    J Environ Sci (China); 2015 Jun; 32():189-95. PubMed ID: 26040745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous removal of formaldehyde and benzene in indoor air with a combination of sorption- and decomposition-type air filters.
    Sekine Y; Fukuda M; Takao Y; Ozano T; Sakuramoto H; Wang KW
    Environ Technol; 2011 Dec; 33(15-16):1983-9. PubMed ID: 22439587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Assessment of Indoor Formaldehyde and Bioaerosol Removal by Using Negative Discharge Electrostatic Air Cleaners.
    Liu CY; Tseng CH; Wang KF
    Int J Environ Res Public Health; 2022 Jun; 19(12):. PubMed ID: 35742458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of ultraviolet photocatalytic oxidation for indoor air applications: systematic experimental evaluation.
    Zhong L; Haghighat F; Lee CS; Lakdawala N
    J Hazard Mater; 2013 Oct; 261():130-8. PubMed ID: 23912078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indoor Air Quality in the Metro System in North Taiwan.
    Chen YY; Sung FC; Chen ML; Mao IF; Lu CY
    Int J Environ Res Public Health; 2016 Dec; 13(12):. PubMed ID: 27918460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of formaldehyde over Mn(x)Ce(1)-(x)O(2) catalysts: thermal catalytic oxidation versus ozone catalytic oxidation.
    Li JW; Pan KL; Yu SJ; Yan SY; Chang MB
    J Environ Sci (China); 2014 Dec; 26(12):2546-53. PubMed ID: 25499503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Desiccant wheels as gas-phase absorption (GPA) air cleaners: evaluation by PTR-MS and sensory assessment.
    Fang L; Zhang G; Wisthaler A
    Indoor Air; 2008 Oct; 18(5):375-85. PubMed ID: 18691267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple comparisons of organic, microbial, and fine particulate pollutants in typical indoor environments: diurnal and seasonal variations.
    Mentese S; Rad AY; Arisoy M; Güllü G
    J Air Waste Manag Assoc; 2012 Dec; 62(12):1380-93. PubMed ID: 23362757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indoor air quality in preschools (3- to 5-year-old children) in the Northeast of Portugal during spring-summer season: pollutants and comfort parameters.
    Oliveira M; Slezakova K; Delerue-Matos C; Pereira MDC; Morais S
    J Toxicol Environ Health A; 2017; 80(13-15):740-755. PubMed ID: 28569620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.