BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

561 related articles for article (PubMed ID: 31319951)

  • 1. A comparative study on feature selection for a risk prediction model for colorectal cancer.
    Cueto-López N; García-Ordás MT; Dávila-Batista V; Moreno V; Aragonés N; Alaiz-Rodríguez R
    Comput Methods Programs Biomed; 2019 Aug; 177():219-229. PubMed ID: 31319951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of Feature Selection Techniques for Breast Cancer Risk Prediction.
    López NC; García-Ordás MT; Vitelli-Storelli F; Fernández-Navarro P; Palazuelos C; Alaiz-Rodríguez R
    Int J Environ Res Public Health; 2021 Oct; 18(20):. PubMed ID: 34682416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A reliable method for colorectal cancer prediction based on feature selection and support vector machine.
    Zhao D; Liu H; Zheng Y; He Y; Lu D; Lyu C
    Med Biol Eng Comput; 2019 Apr; 57(4):901-912. PubMed ID: 30478811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Top scoring pairs for feature selection in machine learning and applications to cancer outcome prediction.
    Shi P; Ray S; Zhu Q; Kon MA
    BMC Bioinformatics; 2011 Sep; 12():375. PubMed ID: 21939564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
    Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P
    Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust edge-based biomarker discovery improves prediction of breast cancer metastasis.
    Adnan N; Lei C; Ruan J
    BMC Bioinformatics; 2020 Sep; 21(Suppl 14):359. PubMed ID: 32998692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of machine learning algorithms for clinical event prediction (risk of coronary heart disease).
    Beunza JJ; Puertas E; García-Ovejero E; Villalba G; Condes E; Koleva G; Hurtado C; Landecho MF
    J Biomed Inform; 2019 Sep; 97():103257. PubMed ID: 31374261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust feature selection to predict tumor treatment outcome.
    Mi H; Petitjean C; Dubray B; Vera P; Ruan S
    Artif Intell Med; 2015 Jul; 64(3):195-204. PubMed ID: 26303106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data.
    Zhang Y; Deng Q; Liang W; Zou X
    Biomed Res Int; 2018; 2018():7538204. PubMed ID: 30228989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seminal quality prediction using data mining methods.
    Sahoo AJ; Kumar Y
    Technol Health Care; 2014; 22(4):531-45. PubMed ID: 24898862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification.
    Lee HS; Hong H; Jung DC; Park S; Kim J
    Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative evaluation of support vector machines for computer aided diagnosis of lung cancer in CT based on a multi-dimensional data set.
    Sun T; Wang J; Li X; Lv P; Liu F; Luo Y; Gao Q; Zhu H; Guo X
    Comput Methods Programs Biomed; 2013 Aug; 111(2):519-24. PubMed ID: 23727300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine-learning models for activity class prediction: A comparative study of feature selection and classification algorithms.
    Chong J; Tjurin P; Niemelä M; Jämsä T; Farrahi V
    Gait Posture; 2021 Sep; 89():45-53. PubMed ID: 34225240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SAEROF: an ensemble approach for large-scale drug-disease association prediction by incorporating rotation forest and sparse autoencoder deep neural network.
    Jiang HJ; Huang YA; You ZH
    Sci Rep; 2020 Mar; 10(1):4972. PubMed ID: 32188871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Sydney Triage to Admission Risk Tool (START2) using machine learning techniques to support disposition decision-making.
    Rendell K; Koprinska I; Kyme A; Ebker-White AA; Dinh MM
    Emerg Med Australas; 2019 Jun; 31(3):429-435. PubMed ID: 30469164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using multiple classifiers for predicting the risk of endovascular aortic aneurysm repair re-intervention through hybrid feature selection.
    Attallah O; Karthikesalingam A; Holt PJ; Thompson MM; Sayers R; Bown MJ; Choke EC; Ma X
    Proc Inst Mech Eng H; 2017 Nov; 231(11):1048-1063. PubMed ID: 28925817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feature selection and validated predictive performance in the domain of Legionella pneumophila: a comparative study.
    van der Ploeg T; Steyerberg EW
    BMC Res Notes; 2016 Mar; 9():147. PubMed ID: 26951763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of irregular and unbalanced data to predict diabetic nephropathy using visualization and feature selection methods.
    Cho BH; Yu H; Kim KW; Kim TH; Kim IY; Kim SI
    Artif Intell Med; 2008 Jan; 42(1):37-53. PubMed ID: 17997291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic feed phase identification in multivariate bioprocess profiles by sequential binary classification.
    Nikzad-Langerodi R; Lughofer E; Saminger-Platz S; Zahel T; Sagmeister P; Herwig C
    Anal Chim Acta; 2017 Aug; 982():48-61. PubMed ID: 28734365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning approach to single nucleotide polymorphism-based asthma prediction.
    Gaudillo J; Rodriguez JJR; Nazareno A; Baltazar LR; Vilela J; Bulalacao R; Domingo M; Albia J
    PLoS One; 2019; 14(12):e0225574. PubMed ID: 31800601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.