These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 31320478)

  • 21. Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice.
    Gariani K; Menzies KJ; Ryu D; Wegner CJ; Wang X; Ropelle ER; Moullan N; Zhang H; Perino A; Lemos V; Kim B; Park YK; Piersigilli A; Pham TX; Yang Y; Ku CS; Koo SI; Fomitchova A; Cantó C; Schoonjans K; Sauve AA; Lee JY; Auwerx J
    Hepatology; 2016 Apr; 63(4):1190-204. PubMed ID: 26404765
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration.
    Mukherjee S; Chellappa K; Moffitt A; Ndungu J; Dellinger RW; Davis JG; Agarwal B; Baur JA
    Hepatology; 2017 Feb; 65(2):616-630. PubMed ID: 27809334
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nicotinamide riboside has minimal impact on energy metabolism in mouse models of mild obesity.
    Cartwright DM; Oakey LA; Fletcher RS; Doig CL; Heising S; Larner DP; Nasteska D; Berry CE; Heaselgrave SR; Ludwig C; Hodson DJ; Lavery GG; Garten A
    J Endocrinol; 2021 Sep; 251(1):111-123. PubMed ID: 34370682
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deficiency of the Mitochondrial NAD Kinase Causes Stress-Induced Hepatic Steatosis in Mice.
    Zhang K; Kim H; Fu Z; Qiu Y; Yang Z; Wang J; Zhang D; Tong X; Yin L; Li J; Wu J; Qi NR; Houten SM; Zhang R
    Gastroenterology; 2018 Jan; 154(1):224-237. PubMed ID: 28923496
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nicotinamide riboside attenuates alcohol induced liver injuries via activation of SirT1/PGC-1α/mitochondrial biosynthesis pathway.
    Wang S; Wan T; Ye M; Qiu Y; Pei L; Jiang R; Pang N; Huang Y; Liang B; Ling W; Lin X; Zhang Z; Yang L
    Redox Biol; 2018 Jul; 17():89-98. PubMed ID: 29679894
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nicotinamide Phosphoribosyltransferase-elevated NAD
    Zhang Y; Wang Y; Lu S; Zhong R; Liu Z; Zhao Q; Wang C
    J Cachexia Sarcopenia Muscle; 2023 Apr; 14(2):1003-1018. PubMed ID: 36864250
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adipose tissue NAD
    Yamaguchi S; Franczyk MP; Chondronikola M; Qi N; Gunawardana SC; Stromsdorfer KL; Porter LC; Wozniak DF; Sasaki Y; Rensing N; Wong M; Piston DW; Klein S; Yoshino J
    Proc Natl Acad Sci U S A; 2019 Nov; 116(47):23822-23828. PubMed ID: 31694884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Function of NAD metabolism in white adipose tissue: lessons from mouse models.
    Kwon SY; Park YJ
    Adipocyte; 2024 Dec; 13(1):2313297. PubMed ID: 38316756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Subcellular Characterization of Nicotinamide Adenine Dinucleotide Biosynthesis in Metastatic Melanoma by Using Organelle-Specific Biosensors.
    Gaudino F; Manfredonia I; Managò A; Audrito V; Raffaelli N; Vaisitti T; Deaglio S
    Antioxid Redox Signal; 2019 Nov; 31(15):1150-1165. PubMed ID: 31456414
    [No Abstract]   [Full Text] [Related]  

  • 30. Nuclear Nicotinamide Adenine Dinucleotide Deficiency by Nmnat1 Deletion Impaired Hepatic Insulin Signaling, Mitochondrial Function, and Hepatokine Expression in Mice Fed a High-Fat Diet.
    Dong H; Guo W; Yue R; Sun X; Zhou Z
    Lab Invest; 2024 Mar; 104(3):100329. PubMed ID: 38237740
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tripeptide IRW Upregulates NAMPT Protein Levels in Cells and Obese C57BL/6J Mice.
    Bhullar KS; Son M; Kerek E; Cromwell CR; Wingert BM; Wu K; Jovel J; Camacho CJ; Hubbard BP; Wu J
    J Agric Food Chem; 2021 Feb; 69(5):1555-1566. PubMed ID: 33522796
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NAD
    Dall M; Hassing AS; Treebak JT
    J Physiol; 2022 Mar; 600(5):1135-1154. PubMed ID: 33932956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The mitochondrial NAD kinase functions as a major metabolic regulator upon increased energy demand.
    Kim H; Fu Z; Yang Z; Song Z; Shamsa EH; Yumnamcha T; Sun S; Liu W; Ibrahim AS; Qi NR; Zhang R; Zhang K
    Mol Metab; 2022 Oct; 64():101562. PubMed ID: 35944895
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reversal of endothelial dysfunction by nicotinamide mononucleotide via extracellular conversion to nicotinamide riboside.
    Mateuszuk Ł; Campagna R; Kutryb-Zając B; Kuś K; Słominska EM; Smolenski RT; Chlopicki S
    Biochem Pharmacol; 2020 Aug; 178():114019. PubMed ID: 32389638
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nuclear transport of nicotinamide phosphoribosyltransferase is cell cycle-dependent in mammalian cells, and its inhibition slows cell growth.
    Svoboda P; Krizova E; Sestakova S; Vapenkova K; Knejzlik Z; Rimpelova S; Rayova D; Volfova N; Krizova I; Rumlova M; Sykora D; Kizek R; Haluzik M; Zidek V; Zidkova J; Skop V
    J Biol Chem; 2019 May; 294(22):8676-8689. PubMed ID: 30975903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nampt controls skeletal muscle development by maintaining Ca
    Basse AL; Agerholm M; Farup J; Dalbram E; Nielsen J; Ørtenblad N; Altıntaş A; Ehrlich AM; Krag T; Bruzzone S; Dall M; de Guia RM; Jensen JB; Møller AB; Karlsen A; Kjær M; Barrès R; Vissing J; Larsen S; Jessen N; Treebak JT
    Mol Metab; 2021 Nov; 53():101271. PubMed ID: 34119711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NAD
    Crisol BM; Veiga CB; Braga RR; Lenhare L; Baptista IL; Gaspar RC; Muñoz VR; Cordeiro AV; da Silva ASR; Cintra DE; Moura LP; Pauli JR; Ropelle ER
    Eur J Nutr; 2020 Sep; 59(6):2427-2437. PubMed ID: 31494696
    [TBL] [Abstract][Full Text] [Related]  

  • 38. OXPHOS-Mediated Induction of NAD+ Promotes Complete Oxidation of Fatty Acids and Interdicts Non-Alcoholic Fatty Liver Disease.
    Akie TE; Liu L; Nam M; Lei S; Cooper MP
    PLoS One; 2015; 10(5):e0125617. PubMed ID: 25933096
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Both prolonged high-fat diet consumption and calorie restriction boost hepatic NAD+ metabolism in mice.
    Wei X; Wei C; Tan Y; Dong X; Yang Z; Yan J; Luo X
    J Nutr Biochem; 2023 May; 115():109296. PubMed ID: 36849030
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A conjugated fatty acid present at high levels in bitter melon seed favorably affects lipid metabolism in hepatocytes by increasing NAD(+)/NADH ratio and activating PPARα, AMPK and SIRT1 signaling pathway.
    Chen GC; Su HM; Lin YS; Tsou PY; Chyuan JH; Chao PM
    J Nutr Biochem; 2016 Jul; 33():28-35. PubMed ID: 27260465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.