BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 31320630)

  • 1. Multifunctional and biodegradable self-propelled protein motors.
    Pena-Francesch A; Giltinan J; Sitti M
    Nat Commun; 2019 Jul; 10(1):3188. PubMed ID: 31320630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Chemical Motor Coatings for Modular Powering of Self-Propelled Particles.
    Lin CH; Kinane C; Zhang Z; Pena-Francesch A
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):39332-39342. PubMed ID: 35972784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoconfined catalytic Ångström-size motors.
    Colberg PH; Kapral R
    J Chem Phys; 2015 Nov; 143(18):184906. PubMed ID: 26567683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Propelled Micro/Nanomotors for Sensing and Environmental Remediation.
    Zarei M; Zarei M
    Small; 2018 Jul; 14(30):e1800912. PubMed ID: 29882292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic Systems Powered by Biological Molecular Motors.
    Saper G; Hess H
    Chem Rev; 2020 Jan; 120(1):288-309. PubMed ID: 31509383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing Micro- and Nanoswimmers for Specific Applications.
    Katuri J; Ma X; Stanton MM; Sánchez S
    Acc Chem Res; 2017 Jan; 50(1):2-11. PubMed ID: 27809479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autonomous assembly and disassembly of gliding molecular robots regulated by a DNA-based molecular controller.
    Kawamata I; Nishiyama K; Matsumoto D; Ichiseki S; Keya JJ; Okuyama K; Ichikawa M; Kabir AMR; Sato Y; Inoue D; Murata S; Sada K; Kakugo A; Nomura SM
    Sci Adv; 2024 May; 10(22):eadn4490. PubMed ID: 38820146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microrobot collectives with reconfigurable morphologies, behaviors, and functions.
    Gardi G; Ceron S; Wang W; Petersen K; Sitti M
    Nat Commun; 2022 Apr; 13(1):2239. PubMed ID: 35473915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasticized liquid crystal networks and chemical motors for the active control of power transmission in mechanical devices.
    Pinchin NP; Lin CH; Kinane CA; Yamada N; Pena-Francesch A; Shahsavan H
    Soft Matter; 2022 Nov; 18(42):8063-8070. PubMed ID: 35969176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobic Janus Foam Motors: Self-Propulsion and On-The-Fly Oil Absorption.
    Li X; Mou F; Guo J; Deng Z; Chen C; Xu L; Luo M; Guan J
    Micromachines (Basel); 2018 Jan; 9(1):. PubMed ID: 30393299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Supramolecular Approach to Nanoscale Motion: Polymersome-Based Self-Propelled Nanomotors.
    Ortiz-Rivera I; Mathesh M; Wilson DA
    Acc Chem Res; 2018 Sep; 51(9):1891-1900. PubMed ID: 30179450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. External forces influence the elastic coupling effects during cargo transport by molecular motors.
    Berger F; Keller C; Klumpp S; Lipowsky R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022701. PubMed ID: 25768525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient biocatalytic degradation of pollutants by enzyme-releasing self-propelled motors.
    Orozco J; Vilela D; Valdés-Ramírez G; Fedorak Y; Escarpa A; Vazquez-Duhalt R; Wang J
    Chemistry; 2014 Mar; 20(10):2866-71. PubMed ID: 24500996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery.
    Tang S; Zhang F; Gong H; Wei F; Zhuang J; Karshalev E; Esteban-Fernández de Ávila B; Huang C; Zhou Z; Li Z; Yin L; Dong H; Fang RH; Zhang X; Zhang L; Wang J
    Sci Robot; 2020 Jun; 5(43):. PubMed ID: 33022613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanics of locomotion in the squid Loligo pealei: locomotory function and unsteady hydrodynamics of the jet and intramantle pressure.
    Anderson EJ; DeMont ME
    J Exp Biol; 2000 Sep; 203(Pt 18):2851-63. PubMed ID: 10952883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing the composition of molecular motors on moving axonal cargo using "cargo mapping" analysis.
    Neumann S; Campbell GE; Szpankowski L; Goldstein LS; Encalada SE
    J Vis Exp; 2014 Oct; (92):e52029. PubMed ID: 25406537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D inkjet printed self-propelled motors for micro-stirring.
    Kumar P; Zhang Y; Ebbens SJ; Zhao X
    J Colloid Interface Sci; 2022 Oct; 623():96-108. PubMed ID: 35576653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-polymer hybrid nanostructure-based bioenergy storage device for real-time control of biological motor activity.
    Byun KE; Choi DS; Kim E; Seo DH; Yang H; Seo S; Hong S
    ACS Nano; 2011 Nov; 5(11):8656-64. PubMed ID: 22017602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A resonant squid-inspired robot unlocks biological propulsive efficiency.
    Bujard T; Giorgio-Serchi F; Weymouth GD
    Sci Robot; 2021 Jan; 6(50):. PubMed ID: 34043579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward Understanding of Self-Electrophoretic Propulsion under Realistic Conditions: From Bulk Reactions to Confinement Effects.
    Kuron M; Kreissl P; Holm C
    Acc Chem Res; 2018 Dec; 51(12):2998-3005. PubMed ID: 30417644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.