These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 31320983)

  • 1. Stay Fit, Stay Young: Mitochondria in Movement: The Role of Exercise in the New Mitochondrial Paradigm.
    Huertas JR; Casuso RA; Agustín PH; Cogliati S
    Oxid Med Cell Longev; 2019; 2019():7058350. PubMed ID: 31320983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice.
    Merry TL; Ristow M
    J Physiol; 2016 Sep; 594(18):5195-207. PubMed ID: 27094017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms for mitochondrial adaptation to exercise training in skeletal muscle.
    Drake JC; Wilson RJ; Yan Z
    FASEB J; 2016 Jan; 30(1):13-22. PubMed ID: 26370848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exercise and Mitochondrial Function: Importance and Inference- A Mini Review.
    Vaishali K ; Kumar N; Rao V; Kovela RK; Sinha MK
    Curr Mol Med; 2022; 22(9):755-760. PubMed ID: 34844538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical exercise in aging human skeletal muscle increases mitochondrial calcium uniporter expression levels and affects mitochondria dynamics.
    Zampieri S; Mammucari C; Romanello V; Barberi L; Pietrangelo L; Fusella A; Mosole S; Gherardi G; Höfer C; Löfler S; Sarabon N; Cvecka J; Krenn M; Carraro U; Kern H; Protasi F; Musarò A; Sandri M; Rizzuto R
    Physiol Rep; 2016 Dec; 4(24):. PubMed ID: 28039397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticity of skeletal muscle mitochondria in response to contractile activity.
    Adhihetty PJ; Irrcher I; Joseph AM; Ljubicic V; Hood DA
    Exp Physiol; 2003 Jan; 88(1):99-107. PubMed ID: 12525859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal muscle mitochondria: a major player in exercise, health and disease.
    Russell AP; Foletta VC; Snow RJ; Wadley GD
    Biochim Biophys Acta; 2014 Apr; 1840(4):1276-84. PubMed ID: 24291686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Mechanisms of Mitochondrial Respiratory Chain Supercomplex Assembly Factors and Their Involvement in Muscle Quality.
    Azuma K; Ikeda K; Inoue S
    Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32365950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exercise-induced mitophagy in skeletal muscle occurs in the absence of stabilization of Pink1 on mitochondria.
    Drake JC; Laker RC; Wilson RJ; Zhang M; Yan Z
    Cell Cycle; 2019 Jan; 18(1):1-6. PubMed ID: 30558471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endurance Exercise and the Regulation of Skeletal Muscle Metabolism.
    Booth FW; Ruegsegger GN; Toedebusch RG; Yan Z
    Prog Mol Biol Transl Sci; 2015; 135():129-51. PubMed ID: 26477913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptations of Skeletal Muscle Mitochondria to Obesity, Exercise, and Polyunsaturated Fatty Acids.
    Chen PB; Yang JS; Park Y
    Lipids; 2018 Mar; 53(3):271-278. PubMed ID: 29663395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does SIRT1 determine exercise-induced skeletal muscle mitochondrial biogenesis: differences between in vitro and in vivo experiments?
    Gurd BJ; Little JP; Perry CG
    J Appl Physiol (1985); 2012 Mar; 112(5):926-8. PubMed ID: 22096123
    [No Abstract]   [Full Text] [Related]  

  • 13. Regulation of mitochondrial biogenesis in muscle by endurance exercise.
    Irrcher I; Adhihetty PJ; Joseph AM; Ljubicic V; Hood DA
    Sports Med; 2003; 33(11):783-93. PubMed ID: 12959619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of mitochondrial quality control in exercise-induced health adaptation.
    Ding H; Zhang ZY; Zhang JW; Zhang Y
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2013 Nov; 29(6):543-53. PubMed ID: 24654538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maintenance of Skeletal Muscle Mitochondria in Health, Exercise, and Aging.
    Hood DA; Memme JM; Oliveira AN; Triolo M
    Annu Rev Physiol; 2019 Feb; 81():19-41. PubMed ID: 30216742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutrition and Training Influences on the Regulation of Mitochondrial Adenosine Diphosphate Sensitivity and Bioenergetics.
    Holloway GP
    Sports Med; 2017 Mar; 47(Suppl 1):13-21. PubMed ID: 28332118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial adaptations in aged skeletal muscle: effect of exercise training.
    Ziaaldini MM; Hosseini SR; Fathi M
    Physiol Res; 2017 Mar; 66(1):1-14. PubMed ID: 27982690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation by exercise of skeletal muscle content of mitochondria and GLUT4.
    Holloszy JO
    J Physiol Pharmacol; 2008 Dec; 59 Suppl 7():5-18. PubMed ID: 19258654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Aging and Exercise on Mitochondrial Quality Control in Skeletal Muscle.
    Kim Y; Triolo M; Hood DA
    Oxid Med Cell Longev; 2017; 2017():3165396. PubMed ID: 28656072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postexercise whole body heat stress additively enhances endurance training-induced mitochondrial adaptations in mouse skeletal muscle.
    Tamura Y; Matsunaga Y; Masuda H; Takahashi Y; Takahashi Y; Terada S; Hoshino D; Hatta H
    Am J Physiol Regul Integr Comp Physiol; 2014 Oct; 307(7):R931-43. PubMed ID: 25080501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.