These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31321686)

  • 1. Crop plants with improved culture and quality traits for food, feed and other uses.
    Nogué F; Vergne P; Chèvre AM; Chauvin JE; Bouchabké-Coussa O; Déjardin A; Chevreau E; Hibrand-Saint Oyant L; Mazier M; Barret P; Guiderdoni E; Sallaud C; Foucrier S; Devaux P; Rogowsky PM
    Transgenic Res; 2019 Aug; 28(Suppl 2):65-73. PubMed ID: 31321686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/Cas9 in plants: at play in the genome and at work for crop improvement.
    Hussain B; Lucas SJ; Budak H
    Brief Funct Genomics; 2018 Sep; 17(5):319-328. PubMed ID: 29912293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From bacterial battles to CRISPR crops; progress towards agricultural applications of genome editing.
    Bryant JA
    Emerg Top Life Sci; 2019 Nov; 3(6):687-693. PubMed ID: 32915213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The CRISPR/Cas9 system and its applications in crop genome editing.
    Bao A; Burritt DJ; Chen H; Zhou X; Cao D; Tran LP
    Crit Rev Biotechnol; 2019 May; 39(3):321-336. PubMed ID: 30646772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9: An RNA-guided highly precise synthetic tool for plant genome editing.
    Demirci Y; Zhang B; Unver T
    J Cell Physiol; 2018 Mar; 233(3):1844-1859. PubMed ID: 28430356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perspectives on the Application of Genome-Editing Technologies in Crop Breeding.
    Hua K; Zhang J; Botella JR; Ma C; Kong F; Liu B; Zhu JK
    Mol Plant; 2019 Aug; 12(8):1047-1059. PubMed ID: 31260812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current and future editing reagent delivery systems for plant genome editing.
    Ran Y; Liang Z; Gao C
    Sci China Life Sci; 2017 May; 60(5):490-505. PubMed ID: 28527114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Improvement of Crops Using the CRISPR/Cas System: New Target Genes].
    Ukhatova YV; Erastenkova MV; Korshikova ES; Krylova EA; Mikhailova AS; Semilet TV; Tikhonova NG; Shvachko NA; Khlestkina EK
    Mol Biol (Mosk); 2023; 57(3):387-410. PubMed ID: 37326044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene Editing in Polyploid Crops: Wheat, Camelina, Canola, Potato, Cotton, Peanut, Sugar Cane, and Citrus.
    Weeks DP
    Prog Mol Biol Transl Sci; 2017; 149():65-80. PubMed ID: 28712501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted mutagenesis in wheat microspores using CRISPR/Cas9.
    Bhowmik P; Ellison E; Polley B; Bollina V; Kulkarni M; Ghanbarnia K; Song H; Gao C; Voytas DF; Kagale S
    Sci Rep; 2018 Apr; 8(1):6502. PubMed ID: 29695804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring crops with superior product quality through genome editing: an update.
    Ravikiran KT; Thribhuvan R; Sheoran S; Kumar S; Kushwaha AK; Vineeth TV; Saini M
    Planta; 2023 Mar; 257(5):86. PubMed ID: 36949234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted plant improvement through genome editing: from laboratory to field.
    Miladinovic D; Antunes D; Yildirim K; Bakhsh A; Cvejić S; Kondić-Špika A; Marjanovic Jeromela A; Opsahl-Sorteberg HG; Zambounis A; Hilioti Z
    Plant Cell Rep; 2021 Jun; 40(6):935-951. PubMed ID: 33475781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating genomics and genome editing for orphan crop improvement: a bridge between orphan crops and modern agriculture system.
    Yaqoob H; Tariq A; Bhat BA; Bhat KA; Nehvi IB; Raza A; Djalovic I; Prasad PV; Mir RA
    GM Crops Food; 2023 Dec; 14(1):1-20. PubMed ID: 36606637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice.
    Toda E; Koiso N; Takebayashi A; Ichikawa M; Kiba T; Osakabe K; Osakabe Y; Sakakibara H; Kato N; Okamoto T
    Nat Plants; 2019 Apr; 5(4):363-368. PubMed ID: 30911123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The application of the CRISPR-Cas9 genome editing machinery in food and agricultural science: Current status, future perspectives, and associated challenges.
    Eş I; Gavahian M; Marti-Quijal FJ; Lorenzo JM; Mousavi Khaneghah A; Tsatsanis C; Kampranis SC; Barba FJ
    Biotechnol Adv; 2019; 37(3):410-421. PubMed ID: 30779952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in S gene targeted genome-editing and its applicability to disease resistance breeding in selected
    Barka GD; Lee J
    Bioengineered; 2022 Jun; 13(6):14646-14666. PubMed ID: 35891620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revolutionize Genetic Studies and Crop Improvement with High-Throughput and Genome-Scale CRISPR/Cas9 Gene Editing Technology.
    Yang N; Wang R; Zhao Y
    Mol Plant; 2017 Sep; 10(9):1141-1143. PubMed ID: 28803899
    [No Abstract]   [Full Text] [Related]  

  • 19. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opportunities and Challenges of In Vitro Tissue Culture Systems in the Era of Crop Genome Editing.
    Bekalu ZE; Panting M; Bæksted Holme I; Brinch-Pedersen H
    Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.