These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 31322299)
1. Benchmarking to the Gold Standard: Hyaluronan-Oxime Hydrogels Recapitulate Xenograft Models with In Vitro Breast Cancer Spheroid Culture. Baker AEG; Bahlmann LC; Tam RY; Liu JC; Ganesh AN; Mitrousis N; Marcellus R; Spears M; Bartlett JMS; Cescon DW; Bader GD; Shoichet MS Adv Mater; 2019 Sep; 31(36):e1901166. PubMed ID: 31322299 [TBL] [Abstract][Full Text] [Related]
2. Independently Tuning the Biochemical and Mechanical Properties of 3D Hyaluronan-Based Hydrogels with Oxime and Diels-Alder Chemistry to Culture Breast Cancer Spheroids. Baker AEG; Tam RY; Shoichet MS Biomacromolecules; 2017 Dec; 18(12):4373-4384. PubMed ID: 29040808 [TBL] [Abstract][Full Text] [Related]
3. A double-network poly(Nɛ-acryloyl L-lysine)/hyaluronic acid hydrogel as a mimic of the breast tumor microenvironment. Xu W; Qian J; Zhang Y; Suo A; Cui N; Wang J; Yao Y; Wang H Acta Biomater; 2016 Mar; 33():131-41. PubMed ID: 26805429 [TBL] [Abstract][Full Text] [Related]
4. Protocol for generating dormant human brain metastatic breast cancer spheroids in vitro. Kondapaneni RV; Gurung SK; Shevde LA; Rao SS STAR Protoc; 2024 Jun; 5(2):102962. PubMed ID: 38492229 [TBL] [Abstract][Full Text] [Related]
5. Hyaluronic acid hydrogels with defined crosslink density for the efficient enrichment of breast cancer stem cells. Tan S; Yamashita A; Gao SJ; Kurisawa M Acta Biomater; 2019 Aug; 94():320-329. PubMed ID: 31125725 [TBL] [Abstract][Full Text] [Related]
6. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening. Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118 [TBL] [Abstract][Full Text] [Related]
7. The use of hyaluronic acid in a 3D biomimetic scaffold supports spheroid formation and the culture of cancer stem cells. Demirel G; Cakıl YD; Koltuk G; Aktas RG; Calıskan M Sci Rep; 2024 Aug; 14(1):19560. PubMed ID: 39174579 [TBL] [Abstract][Full Text] [Related]
8. Hybrid collagen alginate hydrogel as a platform for 3D tumor spheroid invasion. Liu C; Lewin Mejia D; Chiang B; Luker KE; Luker GD Acta Biomater; 2018 Jul; 75():213-225. PubMed ID: 29879553 [TBL] [Abstract][Full Text] [Related]
9. An in vitro hyaluronic acid hydrogel based platform to model dormancy in brain metastatic breast cancer cells. Narkhede AA; Crenshaw JH; Crossman DK; Shevde LA; Rao SS Acta Biomater; 2020 Apr; 107():65-77. PubMed ID: 32119920 [TBL] [Abstract][Full Text] [Related]
10. Dual-degradable and injectable hyaluronic acid hydrogel mimicking extracellular matrix for 3D culture of breast cancer MCF-7 cells. Suo A; Xu W; Wang Y; Sun T; Ji L; Qian J Carbohydr Polym; 2019 May; 211():336-348. PubMed ID: 30824098 [TBL] [Abstract][Full Text] [Related]
11. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels. Wang C; Tong X; Yang F Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441 [TBL] [Abstract][Full Text] [Related]
12. Acquisition of epithelial-mesenchymal transition and cancer stem-like phenotypes within chitosan-hyaluronan membrane-derived 3D tumor spheroids. Huang YJ; Hsu SH Biomaterials; 2014 Dec; 35(38):10070-9. PubMed ID: 25282622 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional constructs using hyaluronan cell carrier as a tool for the study of cancer stem cells. Martínez-Ramos C; Lebourg M J Biomed Mater Res B Appl Biomater; 2015 Aug; 103(6):1249-57. PubMed ID: 25350680 [TBL] [Abstract][Full Text] [Related]
14. 3D Microenvironment Stiffness Regulates Tumor Spheroid Growth and Mechanics via p21 and ROCK. Taubenberger AV; Girardo S; Träber N; Fischer-Friedrich E; Kräter M; Wagner K; Kurth T; Richter I; Haller B; Binner M; Hahn D; Freudenberg U; Werner C; Guck J Adv Biosyst; 2019 Sep; 3(9):e1900128. PubMed ID: 32648654 [TBL] [Abstract][Full Text] [Related]
15. The influence of matrix stiffness on the behavior of brain metastatic breast cancer cells in a biomimetic hyaluronic acid hydrogel platform. Narkhede AA; Crenshaw JH; Manning RM; Rao SS J Biomed Mater Res A; 2018 Jul; 106(7):1832-1841. PubMed ID: 29468800 [TBL] [Abstract][Full Text] [Related]
16. Hydroxyethyl chitosan hydrogels for enhancing breast cancer cell tumorigenesis. Hou G; Sun T; Qian J; Zhang Y; Guo M; Xu W; Wang J; Suo A Int J Biol Macromol; 2021 Aug; 184():768-775. PubMed ID: 34174305 [TBL] [Abstract][Full Text] [Related]
17. Structurally decoupled hyaluronic acid hydrogels for studying matrix metalloproteinase-mediated invasion of metastatic breast cancer cells. Goodarzi K; Rao SS Int J Biol Macromol; 2024 Oct; 277(Pt 4):134493. PubMed ID: 39111478 [TBL] [Abstract][Full Text] [Related]
18. Heparin-hyaluronic acid hydrogel in support of cellular activities of 3D encapsulated adipose derived stem cells. Gwon K; Kim E; Tae G Acta Biomater; 2017 Feb; 49():284-295. PubMed ID: 27919839 [TBL] [Abstract][Full Text] [Related]
19. Rationally designed β-cyclodextrin-crosslinked polyacrylamide hydrogels for cell spheroid formation and 3D tumor model construction. Chen T; Wen Y; Song X; Zhang Z; Zhu J; Tian X; Zeng S; Li J Carbohydr Polym; 2024 Sep; 339():122253. PubMed ID: 38823920 [TBL] [Abstract][Full Text] [Related]
20. Chitosan-hyaluronan based 3D co-culture platform for studying the crosstalk of lung cancer cells and mesenchymal stem cells. Han HW; Hsu SH Acta Biomater; 2016 Sep; 42():157-167. PubMed ID: 27296841 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]