These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 31322299)
21. Hyaluronic-Acid Based Hydrogels for 3-Dimensional Culture of Patient-Derived Glioblastoma Cells. Xiao W; Ehsanipour A; Sohrabi A; Seidlits SK J Vis Exp; 2018 Aug; (138):. PubMed ID: 30199037 [TBL] [Abstract][Full Text] [Related]
22. Mechanical Property of Hydrogels and the Presence of Adipose Stem Cells in Tumor Stroma Affect Spheroid Formation in the 3D Osteosarcoma Model. Kundu B; Bastos ARF; Brancato V; Cerqueira MT; Oliveira JM; Correlo VM; Reis RL; Kundu SC ACS Appl Mater Interfaces; 2019 Apr; 11(16):14548-14559. PubMed ID: 30943004 [TBL] [Abstract][Full Text] [Related]
23. Recreating the tumor microenvironment in a bilayer, hyaluronic acid hydrogel construct for the growth of prostate cancer spheroids. Xu X; Gurski LA; Zhang C; Harrington DA; Farach-Carson MC; Jia X Biomaterials; 2012 Dec; 33(35):9049-60. PubMed ID: 22999468 [TBL] [Abstract][Full Text] [Related]
24. A Method for Prostate and Breast Cancer Cell Spheroid Cultures Using Gelatin Methacryloyl-Based Hydrogels. Meinert C; Theodoropoulos C; Klein TJ; Hutmacher DW; Loessner D Methods Mol Biol; 2018; 1786():175-194. PubMed ID: 29786793 [TBL] [Abstract][Full Text] [Related]
25. Tumor spheroid assembly on hyaluronic acid-based structures: A review. Carvalho MP; Costa EC; Miguel SP; Correia IJ Carbohydr Polym; 2016 Oct; 150():139-48. PubMed ID: 27312623 [TBL] [Abstract][Full Text] [Related]
26. Amyloid fibril-based thixotropic hydrogels for modeling of tumor spheroids in vitro. Singh N; Patel K; Navalkar A; Kadu P; Datta D; Chatterjee D; Mukherjee S; Shaw R; Gahlot N; Shaw A; Jadhav S; Maji SK Biomaterials; 2023 Apr; 295():122032. PubMed ID: 36791521 [TBL] [Abstract][Full Text] [Related]
27. Engineering Cellular Microenvironments with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell Culture Models. Tam RY; Smith LJ; Shoichet MS Acc Chem Res; 2017 Apr; 50(4):703-713. PubMed ID: 28345876 [TBL] [Abstract][Full Text] [Related]
28. Mammary fibroblasts remodel fibrillar collagen microstructure in a biomimetic nanocomposite hydrogel. Liu C; Chiang B; Lewin Mejia D; Luker KE; Luker GD; Lee A Acta Biomater; 2019 Jan; 83():221-232. PubMed ID: 30414485 [TBL] [Abstract][Full Text] [Related]
29. Fabrication of Spheroids with Uniform Size by Self-Assembly of a Micro-Scaled Cell Sheet (μCS): The Effect of Cell Contraction on Spheroid Formation. Kim EM; Lee YB; Byun H; Chang HK; Park J; Shin H ACS Appl Mater Interfaces; 2019 Jan; 11(3):2802-2813. PubMed ID: 30586277 [TBL] [Abstract][Full Text] [Related]
30. Spatially arranged encapsulation of stem cell spheroids within hydrogels for the regulation of spheroid fusion and cell migration. Kim SJ; Byun H; Lee S; Kim E; Lee GM; Huh SJ; Joo J; Shin H Acta Biomater; 2022 Apr; 142():60-72. PubMed ID: 35085797 [TBL] [Abstract][Full Text] [Related]
31. Hydrogel 3D in vitro tumor models for screening cell aggregation mediated drug response. Monteiro MV; Gaspar VM; Ferreira LP; Mano JF Biomater Sci; 2020 Mar; 8(7):1855-1864. PubMed ID: 32091033 [TBL] [Abstract][Full Text] [Related]
32. Hyaluronic acid-fibrin interpenetrating double network hydrogel prepared in situ by orthogonal disulfide cross-linking reaction for biomedical applications. Zhang Y; Heher P; Hilborn J; Redl H; Ossipov DA Acta Biomater; 2016 Jul; 38():23-32. PubMed ID: 27134013 [TBL] [Abstract][Full Text] [Related]
33. Hyaluronan-Based Hydrogels for 3D Modeling of Tumor Tissues. Alsharabasy AM; Pandit A Tissue Eng Part C Methods; 2024 Oct; 30(10):452-499. PubMed ID: 39345138 [TBL] [Abstract][Full Text] [Related]
34. The self-crosslinking smart hyaluronic acid hydrogels as injectable three-dimensional scaffolds for cells culture. Bian S; He M; Sui J; Cai H; Sun Y; Liang J; Fan Y; Zhang X Colloids Surf B Biointerfaces; 2016 Apr; 140():392-402. PubMed ID: 26780252 [TBL] [Abstract][Full Text] [Related]
35. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres. Pradhan S; Clary JM; Seliktar D; Lipke EA Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665 [TBL] [Abstract][Full Text] [Related]
36. Regulation of glioma cell phenotype in 3D matrices by hyaluronic acid. Pedron S; Becka E; Harley BA Biomaterials; 2013 Oct; 34(30):7408-17. PubMed ID: 23827186 [TBL] [Abstract][Full Text] [Related]
37. An alginate-based platform for cancer stem cell research. Qiao SP; Zhao YF; Li CF; Yin YB; Meng QY; Lin FH; Liu Y; Hou XL; Guo K; Chen XB; Tian WM Acta Biomater; 2016 Jun; 37():83-92. PubMed ID: 27109764 [TBL] [Abstract][Full Text] [Related]
38. Photo-crosslinked hyaluronic acid hydrogel as a biomimic extracellular matrix to recapitulate in vivo features of breast cancer cells. Wang J; Xu W; Qian J; Wang Y; Hou G; Suo A Colloids Surf B Biointerfaces; 2022 Jan; 209(Pt 2):112159. PubMed ID: 34687973 [TBL] [Abstract][Full Text] [Related]
39. Hyaluronan-based hydrogels as versatile tumor-like models: Tunable ECM and stiffness with genipin-crosslinking. Bonnesœur S; Morin-Grognet S; Thoumire O; Le Cerf D; Boyer O; Vannier JP; Labat B J Biomed Mater Res A; 2020 May; 108(5):1256-1268. PubMed ID: 32056374 [TBL] [Abstract][Full Text] [Related]
40. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Lou J; Stowers R; Nam S; Xia Y; Chaudhuri O Biomaterials; 2018 Feb; 154():213-222. PubMed ID: 29132046 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]