BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31322332)

  • 1. High-Mobility, Wet-Transferred Graphene Grown by Chemical Vapor Deposition.
    De Fazio D; Purdie DG; Ott AK; Braeuninger-Weimer P; Khodkov T; Goossens S; Taniguchi T; Watanabe K; Livreri P; Koppens FHL; Hofmann S; Goykhman I; Ferrari AC; Lombardo A
    ACS Nano; 2019 Aug; 13(8):8926-8935. PubMed ID: 31322332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scalable High-Mobility Graphene/hBN Heterostructures.
    Martini L; Mišeikis V; Esteban D; Azpeitia J; Pezzini S; Paletti P; Ochapski MW; Convertino D; Hernandez MG; Jimenez I; Coletti C
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37794-37801. PubMed ID: 37523768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hexagonal Boron Nitride assisted transfer and encapsulation of large area CVD graphene.
    Shautsova V; Gilbertson AM; Black NC; Maier SA; Cohen LF
    Sci Rep; 2016 Jul; 6():30210. PubMed ID: 27443219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of Graphene-based 2D-Heterostructure Device Fabricated by All-Dry Transfer Process.
    Tien DH; Park JY; Kim KB; Lee N; Choi T; Kim P; Taniguchi T; Watanabe K; Seo Y
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3072-8. PubMed ID: 26771834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dry transfer of chemical-vapor-deposition-grown graphene onto liquid-sensitive surfaces for tunnel junction applications.
    Feng Y; Chen K
    Nanotechnology; 2015 Jan; 26(3):035302. PubMed ID: 25549272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How good can CVD-grown monolayer graphene be?
    Chen B; Huang H; Ma X; Huang L; Zhang Z; Peng LM
    Nanoscale; 2014 Dec; 6(24):15255-61. PubMed ID: 25381813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wafer-Scale Integration of Graphene-Based Photonic Devices.
    Giambra MA; Mišeikis V; Pezzini S; Marconi S; Montanaro A; Fabbri F; Sorianello V; Ferrari AC; Coletti C; Romagnoli M
    ACS Nano; 2021 Feb; 15(2):3171-3187. PubMed ID: 33522789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cleaning interfaces in layered materials heterostructures.
    Purdie DG; Pugno NM; Taniguchi T; Watanabe K; Ferrari AC; Lombardo A
    Nat Commun; 2018 Dec; 9(1):5387. PubMed ID: 30568160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing extrinsic performance-limiting factors in graphene grown by chemical vapor deposition.
    Chan J; Venugopal A; Pirkle A; McDonnell S; Hinojos D; Magnuson CW; Ruoff RS; Colombo L; Wallace RM; Vogel EM
    ACS Nano; 2012 Apr; 6(4):3224-9. PubMed ID: 22390298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanosecond spin lifetimes in single- and few-layer graphene-hBN heterostructures at room temperature.
    Drögeler M; Volmer F; Wolter M; Terrés B; Watanabe K; Taniguchi T; Güntherodt G; Stampfer C; Beschoten B
    Nano Lett; 2014 Nov; 14(11):6050-5. PubMed ID: 25291305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Space-charge limited transport in large-area monolayer hexagonal boron nitride.
    Mahvash F; Paradis E; Drouin D; Szkopek T; Siaj M
    Nano Lett; 2015 Apr; 15(4):2263-8. PubMed ID: 25730309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Velocity Saturation in Graphene Encapsulated by Hexagonal Boron Nitride.
    Yamoah MA; Yang W; Pop E; Goldhaber-Gordon D
    ACS Nano; 2017 Oct; 11(10):9914-9919. PubMed ID: 28880529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CVD Bilayer Graphene Spin Valves with 26 μm Spin Diffusion Length at Room Temperature.
    Bisswanger T; Winter Z; Schmidt A; Volmer F; Watanabe K; Taniguchi T; Stampfer C; Beschoten B
    Nano Lett; 2022 Jun; 22(12):4949-4955. PubMed ID: 35649273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and electrolytic cleaning of poly(methyl methacrylate) residues on transferred chemical vapor deposited graphene.
    Sun J; Finklea HO; Liu Y
    Nanotechnology; 2017 Mar; 28(12):125703. PubMed ID: 28163262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical vapor deposition of graphene on a "peeled-off" epitaxial Cu(111) foil: a simple approach to improved properties.
    Yu HK; Balasubramanian K; Kim K; Lee JL; Maiti M; Ropers C; Krieg J; Kern K; Wodtke AM
    ACS Nano; 2014 Aug; 8(8):8636-43. PubMed ID: 25068374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemically detaching hBN crystals grown at atmospheric pressure and high temperature for high-performance graphene devices.
    Ouaj T; Kramme L; Metzelaars M; Li J; Watanabe K; Taniguchi T; Edgar JH; Beschoten B; Kögerler P; Stampfer C
    Nanotechnology; 2023 Sep; 34(47):. PubMed ID: 37607531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-clean high-mobility graphene on technologically relevant substrates.
    Tyagi A; Mišeikis V; Martini L; Forti S; Mishra N; Gebeyehu ZM; Giambra MA; Zribi J; Frégnaux M; Aureau D; Romagnoli M; Beltram F; Coletti C
    Nanoscale; 2022 Feb; 14(6):2167-2176. PubMed ID: 35080556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Giant Magnetoresistance in a Chemical Vapor Deposition Graphene Constriction.
    Smith LW; Batey JO; Alexander-Webber JA; Hsieh YC; Fung SJ; Albrow-Owen T; Beere HE; Burton OJ; Hofmann S; Ritchie DA; Kelly M; Chen TM; Joyce HJ; Smith CG
    ACS Nano; 2022 Feb; 16(2):2833-2842. PubMed ID: 35109656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical and Thermal Transport in Coplanar Polycrystalline Graphene-hBN Heterostructures.
    Barrios-Vargas JE; Mortazavi B; Cummings AW; Martinez-Gordillo R; Pruneda M; Colombo L; Rabczuk T; Roche S
    Nano Lett; 2017 Mar; 17(3):1660-1664. PubMed ID: 28195494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper.
    Banszerus L; Schmitz M; Engels S; Dauber J; Oellers M; Haupt F; Watanabe K; Taniguchi T; Beschoten B; Stampfer C
    Sci Adv; 2015 Jul; 1(6):e1500222. PubMed ID: 26601221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.