These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 31322364)
1. Efficiency of a Quantum Otto Heat Engine Operating under a Reservoir at Effective Negative Temperatures. de Assis RJ; de Mendonça TM; Villas-Boas CJ; de Souza AM; Sarthour RS; Oliveira IS; de Almeida NG Phys Rev Lett; 2019 Jun; 122(24):240602. PubMed ID: 31322364 [TBL] [Abstract][Full Text] [Related]
2. Efficiency at maximum power of a quantum Otto cycle within finite-time or irreversible thermodynamics. Wu F; He J; Ma Y; Wang J Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062134. PubMed ID: 25615071 [TBL] [Abstract][Full Text] [Related]
3. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin. Altintas F; Müstecaplıoğlu ÖE Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022142. PubMed ID: 26382378 [TBL] [Abstract][Full Text] [Related]
4. Quantum Otto-type heat engine with fixed frequency. Matos RQ; de Assis RJ; de Almeida NG Phys Rev E; 2023 Nov; 108(5-1):054131. PubMed ID: 38115429 [TBL] [Abstract][Full Text] [Related]
5. Anisotropy-assisted thermodynamic advantage of a local-spin quantum thermal machine. Purkait C; Chand S; Biswas A Phys Rev E; 2024 Apr; 109(4-1):044128. PubMed ID: 38755864 [TBL] [Abstract][Full Text] [Related]
6. Finite-time quantum Otto engine: Surpassing the quasistatic efficiency due to friction. Lee S; Ha M; Park JM; Jeong H Phys Rev E; 2020 Feb; 101(2-1):022127. PubMed ID: 32168587 [TBL] [Abstract][Full Text] [Related]
7. Quantum Otto cycle efficiency on coupled qudits. Ivanchenko EA Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032124. PubMed ID: 26465443 [TBL] [Abstract][Full Text] [Related]
8. Performance bounds of nonadiabatic quantum harmonic Otto engine and refrigerator under a squeezed thermal reservoir. Singh V; Müstecaplıoğlu ÖE Phys Rev E; 2020 Dec; 102(6-1):062123. PubMed ID: 33466082 [TBL] [Abstract][Full Text] [Related]
9. Comparative study of quantum Otto and Carnot engines powered by a spin working substance. Abd-Rabbou MY; Rahman AU; Yurischev MA; Haddadi S Phys Rev E; 2023 Sep; 108(3-1):034106. PubMed ID: 37849157 [TBL] [Abstract][Full Text] [Related]
10. Measurement-based quantum Otto engine with a two-spin system coupled by anisotropic interaction: Enhanced efficiency at finite times. Purkait C; Biswas A Phys Rev E; 2023 May; 107(5-1):054110. PubMed ID: 37329072 [TBL] [Abstract][Full Text] [Related]
11. Josephson quantum spin thermodynamics. Pal S; Benjamin C J Phys Condens Matter; 2022 Jun; 34(30):. PubMed ID: 35551119 [TBL] [Abstract][Full Text] [Related]
13. Performance of a quantum heat engine at strong reservoir coupling. Newman D; Mintert F; Nazir A Phys Rev E; 2017 Mar; 95(3-1):032139. PubMed ID: 28415330 [TBL] [Abstract][Full Text] [Related]
14. Extracting work from random collisions: A model of a quantum heat engine. Shaghaghi V; Palma GM; Benenti G Phys Rev E; 2022 Mar; 105(3-1):034101. PubMed ID: 35428074 [TBL] [Abstract][Full Text] [Related]
15. Quantum mechanical bound for efficiency of quantum Otto heat engine. Park JM; Lee S; Chun HM; Noh JD Phys Rev E; 2019 Jul; 100(1-1):012148. PubMed ID: 31499873 [TBL] [Abstract][Full Text] [Related]
19. Efficiency at maximum power of a heat engine working with a two-level atomic system. Wang R; Wang J; He J; Ma Y Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042119. PubMed ID: 23679385 [TBL] [Abstract][Full Text] [Related]
20. Efficiency at maximum power of a quantum heat engine based on two coupled oscillators. Wang J; Ye Z; Lai Y; Li W; He J Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062134. PubMed ID: 26172688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]