These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31322364)

  • 21. Bounds on fluctuations for finite-time quantum Otto cycle.
    Saryal S; Agarwalla BK
    Phys Rev E; 2021 Jun; 103(6):L060103. PubMed ID: 34271746
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Autonomous quantum heat engine based on non-Markovian dynamics of an optomechanical Hamiltonian.
    Rasola M; Möttönen M
    Sci Rep; 2024 Apr; 14(1):9448. PubMed ID: 38658607
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Boosting the performance of quantum Otto heat engines.
    Chen JF; Sun CP; Dong H
    Phys Rev E; 2019 Sep; 100(3-1):032144. PubMed ID: 31640026
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Otto engine beyond its standard quantum limit.
    Leggio B; Antezza M
    Phys Rev E; 2016 Feb; 93(2):022122. PubMed ID: 26986303
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantum afterburner: improving the efficiency of an ideal heat engine.
    Scully MO
    Phys Rev Lett; 2002 Feb; 88(5):050602. PubMed ID: 11863710
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantum Otto engine working with interacting spin systems: Finite power performance in stochastic thermodynamics.
    Hong Y; Xiao Y; He J; Wang J
    Phys Rev E; 2020 Aug; 102(2-1):022143. PubMed ID: 32942459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Universal quantum Otto heat machine based on the Dicke model.
    Xu HG; Jin J; Neto GDM; de Almeida NG
    Phys Rev E; 2024 Jan; 109(1-1):014122. PubMed ID: 38366433
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coupled quantum Otto cycle.
    Thomas G; Johal RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031135. PubMed ID: 21517482
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unified trade-off optimization of quantum harmonic Otto engine and refrigerator.
    Singh V; Singh S; Abah O; Müstecaplıoğlu ÖE
    Phys Rev E; 2022 Aug; 106(2-1):024137. PubMed ID: 36110016
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantum Otto engine with exchange coupling in the presence of level degeneracy.
    Mehta V; Johal RS
    Phys Rev E; 2017 Sep; 96(3-1):032110. PubMed ID: 29346897
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of reservoir squeezing on quantum systems and work extraction.
    Huang XL; Wang T; Yi XX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051105. PubMed ID: 23214736
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficiency gain and bidirectional operation of quantum engines with decoupled internal levels.
    de Oliveira TR; Jonathan D
    Phys Rev E; 2021 Oct; 104(4-1):044133. PubMed ID: 34781508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temperature-dependent maximization of work and efficiency in a degeneracy-assisted quantum Stirling heat engine.
    Chatterjee S; Koner A; Chatterjee S; Kumar C
    Phys Rev E; 2021 Jun; 103(6-1):062109. PubMed ID: 34271723
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Work and efficiency fluctuations in a quantum Otto cycle with idle levels.
    Anka MF; de Oliveira TR; Jonathan D
    Phys Rev E; 2024 Jun; 109(6-1):064129. PubMed ID: 39021004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Designing a highly efficient graphene quantum spin heat engine.
    Mani A; Pal S; Benjamin C
    Sci Rep; 2019 Apr; 9(1):6018. PubMed ID: 30979964
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Space-fractional quantum heat engine based on level degeneracy.
    Aydiner E
    Sci Rep; 2021 Sep; 11(1):17901. PubMed ID: 34504180
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catalytic Advantage in Otto-like Two-Stroke Quantum Engines.
    Łobejko M; Biswas T; Mazurek P; Horodecki M
    Phys Rev Lett; 2024 Jun; 132(26):260403. PubMed ID: 38996292
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Achieve higher efficiency at maximum power with finite-time quantum Otto cycle.
    Chen JF; Sun CP; Dong H
    Phys Rev E; 2019 Dec; 100(6-1):062140. PubMed ID: 31962481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multilayer Graphene as an Endoreversible Otto Engine.
    Myers NM; Peña FJ; Cortés N; Vargas P
    Nanomaterials (Basel); 2023 May; 13(9):. PubMed ID: 37177093
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Collective performance of a finite-time quantum Otto cycle.
    Kloc M; Cejnar P; Schaller G
    Phys Rev E; 2019 Oct; 100(4-1):042126. PubMed ID: 31771028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.