These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 31322407)

  • 1. Direct Determination of Band-Gap Renormalization in the Photoexcited Monolayer MoS_{2}.
    Liu F; Ziffer ME; Hansen KR; Wang J; Zhu X
    Phys Rev Lett; 2019 Jun; 122(24):246803. PubMed ID: 31322407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS_{2}.
    Yao K; Yan A; Kahn S; Suslu A; Liang Y; Barnard ES; Tongay S; Zettl A; Borys NJ; Schuck PJ
    Phys Rev Lett; 2017 Aug; 119(8):087401. PubMed ID: 28952768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exciton Polarization and Renormalization Effect for Optical Modulation in Monolayer Semiconductors.
    Pu J; Matsuki K; Chu L; Kobayashi Y; Sasaki S; Miyata Y; Eda G; Takenobu T
    ACS Nano; 2019 Aug; 13(8):9218-9226. PubMed ID: 31394038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoinduced Bandgap Renormalization and Exciton Binding Energy Reduction in WS
    Cunningham PD; Hanbicki AT; McCreary KM; Jonker BT
    ACS Nano; 2017 Dec; 11(12):12601-12608. PubMed ID: 29227085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical Tuning of Exciton Binding Energies in Monolayer WS_{2}.
    Chernikov A; van der Zande AM; Hill HM; Rigosi AF; Velauthapillai A; Hone J; Heinz TF
    Phys Rev Lett; 2015 Sep; 115(12):126802. PubMed ID: 26431003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Excitonic Photoluminescence in Direct and Indirect Band Gap Monolayer MoS2.
    Steinhoff A; Kim JH; Jahnke F; Rösner M; Kim DS; Lee C; Han GH; Jeong MS; Wehling TO; Gies C
    Nano Lett; 2015 Oct; 15(10):6841-7. PubMed ID: 26322814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carrier plasmon induced nonlinear band gap renormalization in two-dimensional semiconductors.
    Liang Y; Yang L
    Phys Rev Lett; 2015 Feb; 114(6):063001. PubMed ID: 25723215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for the Dominance of Carrier-Induced Band Gap Renormalization over Biexciton Formation in Cryogenic Ultrafast Experiments on MoS
    Wood RE; Lloyd LT; Mujid F; Wang L; Allodi MA; Gao H; Mazuski R; Ting PC; Xie S; Park J; Engel GS
    J Phys Chem Lett; 2020 Apr; 11(7):2658-2666. PubMed ID: 32168454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic structure of a quasi-freestanding MoS₂ monolayer.
    Eknapakul T; King PD; Asakawa M; Buaphet P; He RH; Mo SK; Takagi H; Shen KM; Baumberger F; Sasagawa T; Jungthawan S; Meevasana W
    Nano Lett; 2014 Mar; 14(3):1312-6. PubMed ID: 24552197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast Band Structure Control of a Two-Dimensional Heterostructure.
    Ulstrup S; Čabo AG; Miwa JA; Riley JM; Grønborg SS; Johannsen JC; Cacho C; Alexander O; Chapman RT; Springate E; Bianchi M; Dendzik M; Lauritsen JV; King PD; Hofmann P
    ACS Nano; 2016 Jun; 10(6):6315-22. PubMed ID: 27267820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasiparticle and Optical Properties of Carrier-Doped Monolayer MoTe
    Champagne A; Haber JB; Pokawanvit S; Qiu DY; Biswas S; Atwater HA; da Jornada FH; Neaton JB
    Nano Lett; 2023 May; 23(10):4274-4281. PubMed ID: 37159934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast carrier dynamics in a monolayer MoS
    Khatua DP; Singh A; Gurung S; Khan S; Tanwar M; Kumar R; Jayabalan J
    J Phys Condens Matter; 2022 Feb; 34(15):. PubMed ID: 35062012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamical screening in monolayer transition-metal dichalcogenides and its manifestations in the exciton spectrum.
    Scharf B; Van Tuan D; Žutić I; Dery H
    J Phys Condens Matter; 2019 May; 31(20):203001. PubMed ID: 30763925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indirect to Direct Gap Crossover in Two-Dimensional InSe Revealed by Angle-Resolved Photoemission Spectroscopy.
    Hamer MJ; Zultak J; Tyurnina AV; Zólyomi V; Terry D; Barinov A; Garner A; Donoghue J; Rooney AP; Kandyba V; Giampietri A; Graham A; Teutsch N; Xia X; Koperski M; Haigh SJ; Fal'ko VI; Gorbachev RV; Wilson NR
    ACS Nano; 2019 Feb; 13(2):2136-2142. PubMed ID: 30676744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Band Gap Renormalization, Carrier Multiplication, and Stark Broadening in Photoexcited Black Phosphorus.
    Chen Z; Dong J; Papalazarou E; Marsi M; Giorgetti C; Zhang Z; Tian B; Rueff JP; Taleb-Ibrahimi A; Perfetti L
    Nano Lett; 2019 Jan; 19(1):488-493. PubMed ID: 30525684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directly Visualizing Photoinduced Renormalized Momentum-Forbidden Electronic Quantum States in an Atomically Thin Semiconductor.
    Chen HY; Hsu HC; Huang CC; Li MY; Li LJ; Chiu YP
    ACS Nano; 2022 Jun; 16(6):9660-9666. PubMed ID: 35584548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Observation of Band Gap Renormalization in Layered Indium Selenide.
    Zhang Z; Chen Z; Bouaziz M; Giorgetti C; Yi H; Avila J; Tian B; Shukla A; Perfetti L; Fan D; Li Y; Bendounan A
    ACS Nano; 2019 Nov; 13(11):13486-13491. PubMed ID: 31644265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical Excitonic Effects in Doped Two-Dimensional Semiconductors.
    Gao S; Liang Y; Spataru CD; Yang L
    Nano Lett; 2016 Sep; 16(9):5568-73. PubMed ID: 27479740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets.
    Zhao W; Ribeiro RM; Eda G
    Acc Chem Res; 2015 Jan; 48(1):91-9. PubMed ID: 25515381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.