These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 31322743)

  • 1. Egg yolk phospholipids: a functional food material to generate deep-fat frying odorants.
    Chen DW; Balagiannis DP; Parker JK
    J Sci Food Agric; 2019 Nov; 99(14):6638-6643. PubMed ID: 31322743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of egg yolk phospholipids to generate chicken meat odorants.
    Chen DW; Balagiannis DP; Parker JK
    Food Chem; 2019 Jul; 286():71-77. PubMed ID: 30827667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Potent Aroma Compounds in Preserved Egg Yolk by Gas Chromatography-Olfactometry, Quantitative Measurements, and Odor Activity Value.
    Zhang Y; Liu Y; Yang W; Huang J; Liu Y; Huang M; Sun B; Li C
    J Agric Food Chem; 2018 Jun; 66(24):6132-6141. PubMed ID: 29790747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Egg yolk phospholipids as an ideal precursor of fatty note odorants for chicken meat and fried foods: A review.
    Chen DW; Wan P; Yao J; Yang X; Liu J
    Food Chem; 2023 May; 407():135177. PubMed ID: 36527950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Odorants generated by thermally induced degradation of phospholipids.
    Lin J; Blank I
    J Agric Food Chem; 2003 Jul; 51(15):4364-9. PubMed ID: 12848511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes of Potent Odorants in Salted Duck Egg Yolk before and after Roasting.
    Hao X; Liang M; Xin R; Liu Y
    Molecules; 2024 Aug; 29(17):. PubMed ID: 39274832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the non-aldehyde volatile compounds formed during deep-fat frying process.
    Zhang Q; Wan C; Wang C; Chen H; Liu Y; Li S; Lin D; Wu D; Qin W
    Food Chem; 2018 Mar; 243():151-161. PubMed ID: 29146322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of compounds responsible for tempeh aroma.
    Jeleń H; Majcher M; Ginja A; Kuligowski M
    Food Chem; 2013 Nov; 141(1):459-65. PubMed ID: 23768380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of Desired Aroma-Active as Well as Undesired Toxicologically Relevant Compounds during Deep-Frying of Potatoes with Different Edible Vegetable Fats and Oils.
    Thürer A; Granvogl M
    J Agric Food Chem; 2016 Nov; 64(47):9107-9115. PubMed ID: 27806575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Key Aroma Compounds in Beijing Roasted Duck by Gas Chromatography-Olfactometry-Mass Spectrometry, Odor-Activity Values, and Aroma-Recombination Experiments.
    Liu H; Wang Z; Zhang D; Shen Q; Pan T; Hui T; Ma J
    J Agric Food Chem; 2019 May; 67(20):5847-5856. PubMed ID: 31042865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of egg yolk phospholipids to improve the thermal-oxidative stability of fatty acids, capsaicinoids and carotenoids in chili oil.
    Bai X; Zhang Q; Zhou X; Yao J; Wan P; Chen DW
    Food Chem; 2024 Sep; 451():139423. PubMed ID: 38677135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of odor-active compounds of chicken broth and improved flavor by thermal modulation in electrical stewpots.
    Zhang M; Chen X; Hayat K; Duhoranimana E; Zhang X; Xia S; Yu J; Xing F
    Food Res Int; 2018 Jul; 109():72-81. PubMed ID: 29803494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Oil Types and Prolonged Frying Time on the Volatile Compounds and Sensory Properties of French Fries.
    Xu L; Ji X; Wu G; Karrar E; Yao L; Wang X
    J Oleo Sci; 2021 Jul; 70(7):885-899. PubMed ID: 34121029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aroma Compounds in Chicken Broths of Beijing Youji and Commercial Broilers.
    Fan M; Xiao Q; Xie J; Cheng J; Sun B; Du W; Wang Y; Wang T
    J Agric Food Chem; 2018 Oct; 66(39):10242-10251. PubMed ID: 30196698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in frying fats with batters containing egg.
    Bennion M; Stirk KS; Ball BH
    J Am Diet Assoc; 1976 Mar; 68(3):234-6. PubMed ID: 942985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas chromatographic-olfactometric aroma profile and quantitative analysis of volatile carbonyls of grilled beef from different finishing feed systems.
    Resconi VC; del Mar Campo M; Montossi F; Ferreira V; Sañudo C; Escudero A
    J Food Sci; 2012 Jun; 77(6):S240-6. PubMed ID: 22591324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Key Aroma Compounds in Raw and Thermally Processed Prawns and Thermally Processed Lobsters by Application of Aroma Extract Dilution Analysis.
    Mall V; Schieberle P
    J Agric Food Chem; 2016 Aug; 64(33):6433-42. PubMed ID: 27486834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flavor formation in frying process of green onion (Allium fistulosum L.) deep-fried oil.
    Zhang N; Sun B; Mao X; Chen H; Zhang Y
    Food Res Int; 2019 Jul; 121():296-306. PubMed ID: 31108752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of oleic and linoleic acids on the production of deep-fried odor in heated triolein and trilinolein.
    Warner K; Neff WE; Byrdwell WC; Gardner HW
    J Agric Food Chem; 2001 Feb; 49(2):899-905. PubMed ID: 11262047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of nutrient content and energy of eggs from different chicken genotypes.
    Antova GA; Gerzilov VT; Petkova ZY; Boncheva VN; Bozhichkova IN; St Penkov D; Petrov PB
    J Sci Food Agric; 2019 Oct; 99(13):5890-5898. PubMed ID: 31206714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.