These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 31322827)

  • 1. Finding Needles in a Haystack: Determining Key Molecular Descriptors Associated with the Blood-brain Barrier Entry of Chemical Compounds Using Machine Learning.
    Majumdar S; Basak SC; Lungu CN; Diudea MV; Grunwald GD
    Mol Inform; 2019 Aug; 38(8-9):e1800164. PubMed ID: 31322827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Silico Prediction of Blood-Brain Barrier Permeability of Compounds by Machine Learning and Resampling Methods.
    Wang Z; Yang H; Wu Z; Wang T; Li W; Tang Y; Liu G
    ChemMedChem; 2018 Oct; 13(20):2189-2201. PubMed ID: 30110511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSAR modeling of the blood-brain barrier permeability for diverse organic compounds.
    Zhang L; Zhu H; Oprea TI; Golbraikh A; Tropsha A
    Pharm Res; 2008 Aug; 25(8):1902-14. PubMed ID: 18553217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical structural descriptors and mutagenicity assessment: a study with congeneric and diverse datasets
    Majumdar S; Basak SC; Lungu CN; Diudea MV; Grunwald GD
    SAR QSAR Environ Res; 2018 Aug; 29(8):579-590. PubMed ID: 30025481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved Prediction of Blood-Brain Barrier Permeability Through Machine Learning with Combined Use of Molecular Property-Based Descriptors and Fingerprints.
    Yuan Y; Zheng F; Zhan CG
    AAPS J; 2018 Mar; 20(3):54. PubMed ID: 29564576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the Blood-Brain Barrier (BBB) Permeability of Chemicals Based on Machine-Learning and Ensemble Methods.
    Liu L; Zhang L; Feng H; Li S; Liu M; Zhao J; Liu H
    Chem Res Toxicol; 2021 Jun; 34(6):1456-1467. PubMed ID: 34047182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QNA-based 'Star Track' QSAR approach.
    Filimonov DA; Zakharov AV; Lagunin AA; Poroikov VV
    SAR QSAR Environ Res; 2009 Oct; 20(7-8):679-709. PubMed ID: 20024804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QSAR model for blood-brain barrier permeation.
    Toropov AA; Toropova AP; Beeg M; Gobbi M; Salmona M
    J Pharmacol Toxicol Methods; 2017 Nov; 88(Pt 1):7-18. PubMed ID: 28476566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of blood-brain barrier permeability of organic compounds.
    Dyabina AS; Radchenko EV; Palyulin VA; Zefirov NS
    Dokl Biochem Biophys; 2016 Sep; 470(1):371-374. PubMed ID: 27817020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developing Enhanced Blood-Brain Barrier Permeability Models: Integrating External Bio-Assay Data in QSAR Modeling.
    Wang W; Kim MT; Sedykh A; Zhu H
    Pharm Res; 2015 Sep; 32(9):3055-65. PubMed ID: 25862462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Classification models of structure - P-glycoprotein activity of drugs].
    Grigorev VY; Solodova SL; Polianczyk DE; Raevsky OA
    Biomed Khim; 2016; 62(2):173-9. PubMed ID: 27143376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Blood-Brain Barrier Penetration (BBBP) Based on Molecular Descriptors of the Free-Form and In-Blood-Form Datasets.
    Sakiyama H; Fukuda M; Okuno T
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of skin penetration processes of organic molecules using molecular similarity and QSAR analysis.
    Santos-Filho OA; Hopfinger AJ; Zheng T
    Mol Pharm; 2004; 1(6):466-76. PubMed ID: 16028358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybridizing Feature Selection and Feature Learning Approaches in QSAR Modeling for Drug Discovery.
    Ponzoni I; Sebastián-Pérez V; Requena-Triguero C; Roca C; Martínez MJ; Cravero F; Díaz MF; Páez JA; Arrayás RG; Adrio J; Campillo NE
    Sci Rep; 2017 May; 7(1):2403. PubMed ID: 28546583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. General and class specific models for prediction of soil sorption using various physicochemical descriptors.
    Andersson PL; Maran U; Fara D; Karelson M; Hermens JL
    J Chem Inf Comput Sci; 2002; 42(6):1450-9. PubMed ID: 12444743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSAR modelling study of the bioconcentration factor and toxicity of organic compounds to aquatic organisms using machine learning and ensemble methods.
    Ai H; Wu X; Zhang L; Qi M; Zhao Y; Zhao Q; Zhao J; Liu H
    Ecotoxicol Environ Saf; 2019 Sep; 179():71-78. PubMed ID: 31026752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatorial QSAR of ambergris fragrance compounds.
    Kovatcheva A; Golbraikh A; Oloff S; Xiao YD; Zheng W; Wolschann P; Buchbauer G; Tropsha A
    J Chem Inf Comput Sci; 2004; 44(2):582-95. PubMed ID: 15032539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blood-brain barrier permeability mechanisms in view of quantitative structure-activity relationships (QSAR).
    Bujak R; Struck-Lewicka W; Kaliszan M; Kaliszan R; Markuszewski MJ
    J Pharm Biomed Anal; 2015 Apr; 108():29-37. PubMed ID: 25703237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Qualitative and quantitative structure-activity relationship modelling for predicting blood-brain barrier permeability of structurally diverse chemicals.
    Gupta S; Basant N; Singh KP
    SAR QSAR Environ Res; 2015; 26(2):95-124. PubMed ID: 25629764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of chemical carcinogenicity by machine learning approaches.
    Tan NX; Rao HB; Li ZR; Li XY
    SAR QSAR Environ Res; 2009; 20(1-2):27-75. PubMed ID: 19343583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.