These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 31322899)
1. In Situ Electrochemical Mapping of Lithium-Sulfur Battery Interfaces Using AFM-SECM. Mahankali K; Thangavel NK; Reddy Arava LM Nano Lett; 2019 Aug; 19(8):5229-5236. PubMed ID: 31322899 [TBL] [Abstract][Full Text] [Related]
2. Revealing the Electrochemical Charging Mechanism of Nanosized Li Zhang L; Sun D; Feng J; Cairns EJ; Guo J Nano Lett; 2017 Aug; 17(8):5084-5091. PubMed ID: 28731713 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries. Fang X; Guo X; Mao Y; Hua C; Shen L; Hu Y; Wang Z; Wu F; Chen L Chem Asian J; 2012 May; 7(5):1013-7. PubMed ID: 22374889 [TBL] [Abstract][Full Text] [Related]
4. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
5. AFM as an analysis tool for high-capacity sulfur cathodes for Li-S batteries. Hiesgen R; Sörgel S; Costa R; Carlé L; Galm I; Cañas N; Pascucci B; Friedrich KA Beilstein J Nanotechnol; 2013; 4():611-24. PubMed ID: 24205455 [TBL] [Abstract][Full Text] [Related]
7. Critical Role of Anion Donicity in Li Yang B; Jiang H; Zhou Y; Liang Z; Zhao T; Lu YC ACS Appl Mater Interfaces; 2019 Jul; 11(29):25940-25948. PubMed ID: 31246006 [TBL] [Abstract][Full Text] [Related]
8. Insight into sulfur reactions in Li-S batteries. Xu R; Belharouak I; Zhang X; Chamoun R; Yu C; Ren Y; Nie A; Shahbazian-Yassar R; Lu J; Li JC; Amine K ACS Appl Mater Interfaces; 2014 Dec; 6(24):21938-45. PubMed ID: 25425055 [TBL] [Abstract][Full Text] [Related]
9. PVP-Assisted Synthesis of Uniform Carbon Coated Li2S/CB for High-Performance Lithium-Sulfur Batteries. Chen L; Liu Y; Zhang F; Liu C; Shaw LL ACS Appl Mater Interfaces; 2015 Nov; 7(46):25748-56. PubMed ID: 26529481 [TBL] [Abstract][Full Text] [Related]
10. Visualizing interfacial collective reaction behaviour of Li-S batteries. Zhou S; Shi J; Liu S; Li G; Pei F; Chen Y; Deng J; Zheng Q; Li J; Zhao C; Hwang I; Sun CJ; Liu Y; Deng Y; Huang L; Qiao Y; Xu GL; Chen JF; Amine K; Sun SG; Liao HG Nature; 2023 Sep; 621(7977):75-81. PubMed ID: 37673990 [TBL] [Abstract][Full Text] [Related]
11. In Situ Generated Li Yan H; Wang H; Wang D; Li X; Gong Z; Yang Y Nano Lett; 2019 May; 19(5):3280-3287. PubMed ID: 31009570 [TBL] [Abstract][Full Text] [Related]
12. Three-Dimensional Growth of Li2S in Lithium-Sulfur Batteries Promoted by a Redox Mediator. Gerber LC; Frischmann PD; Fan FY; Doris SE; Qu X; Scheuermann AM; Persson K; Chiang YM; Helms BA Nano Lett; 2016 Jan; 16(1):549-54. PubMed ID: 26691496 [TBL] [Abstract][Full Text] [Related]
13. Local Concentration Effect-Derived Heterogeneous Li Wu H; Wang L; Bi J; Li Y; Pang X; Li Z; Meng Q; Liu H; Wang L ACS Appl Mater Interfaces; 2020 Apr; 12(13):15228-15238. PubMed ID: 32159320 [TBL] [Abstract][Full Text] [Related]
14. Insight into the Interfacial Process and Mechanism in Lithium-Sulfur Batteries: An In Situ AFM Study. Lang SY; Shi Y; Guo YG; Wang D; Wen R; Wan LJ Angew Chem Int Ed Engl; 2016 Dec; 55(51):15835-15839. PubMed ID: 27860060 [TBL] [Abstract][Full Text] [Related]
15. Atomically Engineered Transition Metal Dichalcogenides for Liquid Polysulfide Adsorption and Their Effective Conversion in Li-S Batteries. Mahankali K; Thangavel NK; Gopchenko D; Arava LMR ACS Appl Mater Interfaces; 2020 Jun; 12(24):27112-27121. PubMed ID: 32432451 [TBL] [Abstract][Full Text] [Related]
16. High-Temperature Formation of a Functional Film at the Cathode/Electrolyte Interface in Lithium-Sulfur Batteries: An In Situ AFM Study. Lang SY; Shi Y; Guo YG; Wen R; Wan LJ Angew Chem Int Ed Engl; 2017 Nov; 56(46):14433-14437. PubMed ID: 28929556 [TBL] [Abstract][Full Text] [Related]
17. Activated Li2S as a High-Performance Cathode for Rechargeable Lithium-Sulfur Batteries. Zu C; Klein M; Manthiram A J Phys Chem Lett; 2014 Nov; 5(22):3986-91. PubMed ID: 26276482 [TBL] [Abstract][Full Text] [Related]
18. Ammonium Additives to Dissolve Lithium Sulfide through Hydrogen Binding for High-Energy Lithium-Sulfur Batteries. Pan H; Han KS; Vijayakumar M; Xiao J; Cao R; Chen J; Zhang J; Mueller KT; Shao Y; Liu J ACS Appl Mater Interfaces; 2017 Feb; 9(5):4290-4295. PubMed ID: 27367455 [TBL] [Abstract][Full Text] [Related]
19. One-pot pyrolysis of lithium sulfate and graphene nanoplatelet aggregates: in situ formed Li₂S/graphene composite for lithium-sulfur batteries. Li Z; Zhang S; Zhang C; Ueno K; Yasuda T; Tatara R; Dokko K; Watanabe M Nanoscale; 2015 Sep; 7(34):14385-92. PubMed ID: 26248299 [TBL] [Abstract][Full Text] [Related]
20. Understanding the effect of a fluorinated ether on the performance of lithium-sulfur batteries. Azimi N; Xue Z; Bloom I; Gordin ML; Wang D; Daniel T; Takoudis C; Zhang Z ACS Appl Mater Interfaces; 2015 May; 7(17):9169-77. PubMed ID: 25866861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]