These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 31323150)
1. Positional differences of intronic transposons in pAMT affect the pungency level in chili pepper through altered splicing efficiency. Tanaka Y; Asano T; Kanemitsu Y; Goto T; Yoshida Y; Yasuba K; Misawa Y; Nakatani S; Kobata K Plant J; 2019 Nov; 100(4):693-705. PubMed ID: 31323150 [TBL] [Abstract][Full Text] [Related]
2. Functional loss of pAMT results in biosynthesis of capsinoids, capsaicinoid analogs, in Capsicum annuum cv. CH-19 Sweet. Lang Y; Kisaka H; Sugiyama R; Nomura K; Morita A; Watanabe T; Tanaka Y; Yazawa S; Miwa T Plant J; 2009 Sep; 59(6):953-61. PubMed ID: 19473323 [TBL] [Abstract][Full Text] [Related]
3. Novel loss-of-function putative aminotransferase alleles cause biosynthesis of capsinoids, nonpungent capsaicinoid analogues, in mildly pungent chili peppers (Capsicum chinense). Tanaka Y; Hosokawa M; Miwa T; Watanabe T; Yazawa S J Agric Food Chem; 2010 Nov; 58(22):11762-7. PubMed ID: 20973559 [TBL] [Abstract][Full Text] [Related]
4. Mutation in the putative ketoacyl-ACP reductase CaKR1 induces loss of pungency in Capsicum. Koeda S; Sato K; Saito H; Nagano AJ; Yasugi M; Kudoh H; Tanaka Y Theor Appl Genet; 2019 Jan; 132(1):65-80. PubMed ID: 30267113 [TBL] [Abstract][Full Text] [Related]
5. The pungent-variable sweet chili pepper 'Shishito' (Capsicum annuum) provides insights regarding the relationship between pungency, the number of seeds, and gene expression involving capsaicinoid biosynthesis. Kondo F; Hatakeyama K; Sakai A; Minami M; Nemoto K; Matsushima K Mol Genet Genomics; 2021 May; 296(3):591-603. PubMed ID: 33599813 [TBL] [Abstract][Full Text] [Related]
6. An evolutionary view of vanillylamine synthase pAMT, a key enzyme of capsaicinoid biosynthesis pathway in chili pepper. Kusaka H; Nakasato S; Sano K; Kobata K; Ohno S; Doi M; Tanaka Y Plant J; 2024 Mar; 117(5):1453-1465. PubMed ID: 38117481 [TBL] [Abstract][Full Text] [Related]
7. Assessment of Capsaicinoid and Capsinoid Accumulation Patterns during Fruit Development in Three Chili Pepper Genotypes ( Fayos O; Ochoa-Alejo N; de la Vega OM; Savirón M; Orduna J; Mallor C; Barbero GF; Garcés-Claver A J Agric Food Chem; 2019 Nov; 67(44):12219-12227. PubMed ID: 31613626 [TBL] [Abstract][Full Text] [Related]
8. Difference in capsaicinoid biosynthesis gene expression in the pericarp reveals elevation of capsaicinoid contents in chili peppers (Capsicum chinense). Tanaka Y; Nakashima F; Kirii E; Goto T; Yoshida Y; Yasuba KI Plant Cell Rep; 2017 Feb; 36(2):267-279. PubMed ID: 27873007 [TBL] [Abstract][Full Text] [Related]
9. Virus-induced silencing of Comt, pAmt and Kas genes results in a reduction of capsaicinoid accumulation in chili pepper fruits. del Rosario Abraham-Juárez M; del Carmen Rocha-Granados M; López MG; Rivera-Bustamante RF; Ochoa-Alejo N Planta; 2008 Feb; 227(3):681-95. PubMed ID: 17999078 [TBL] [Abstract][Full Text] [Related]
10. Evidence of capsaicin synthase activity of the Pun1-encoded protein and its role as a determinant of capsaicinoid accumulation in pepper. Ogawa K; Murota K; Shimura H; Furuya M; Togawa Y; Matsumura T; Masuta C BMC Plant Biol; 2015 Mar; 15():93. PubMed ID: 25884984 [TBL] [Abstract][Full Text] [Related]
11. A low-pungency S3212 genotype of Capsicum frutescens caused by a mutation in the putative aminotransferase (p-AMT) gene. Park YJ; Nishikawa T; Minami M; Nemoto K; Iwasaki T; Matsushima K Mol Genet Genomics; 2015 Dec; 290(6):2217-24. PubMed ID: 26048129 [TBL] [Abstract][Full Text] [Related]
12. Newly mutated putative-aminotransferase in nonpungent pepper (Capsicum annuum) results in biosynthesis of capsinoids, capsaicinoid analogues. Tanaka Y; Hosokawa M; Miwa T; Watanabe T; Yazawa S J Agric Food Chem; 2010 Feb; 58(3):1761-7. PubMed ID: 20025278 [TBL] [Abstract][Full Text] [Related]
13. Factors affecting the capsaicinoid profile of hot peppers and biological activity of their non-pungent analogs (Capsinoids) present in sweet peppers. Uarrota VG; Maraschin M; de Bairros ÂFM; Pedreschi R Crit Rev Food Sci Nutr; 2021; 61(4):649-665. PubMed ID: 32212928 [TBL] [Abstract][Full Text] [Related]
14. Genetic control of pungency in C. chinense via the Pun1 locus. Stewart C; Mazourek M; Stellari GM; O'Connell M; Jahn M J Exp Bot; 2007; 58(5):979-91. PubMed ID: 17339653 [TBL] [Abstract][Full Text] [Related]
15. Genetic mapping revealed that the Yi S; Lee DG; Back S; Hong JP; Jang S; Han K; Kang BC Front Plant Sci; 2022; 13():1039393. PubMed ID: 36388488 [TBL] [Abstract][Full Text] [Related]
17. Contrasting modes for loss of pungency between cultivated and wild species of Capsicum. Stellari GM; Mazourek M; Jahn MM Heredity (Edinb); 2010 May; 104(5):460-71. PubMed ID: 19812612 [TBL] [Abstract][Full Text] [Related]
18. Molecular biology of capsaicinoid biosynthesis in chili pepper (Capsicum spp.). Aza-González C; Núñez-Palenius HG; Ochoa-Alejo N Plant Cell Rep; 2011 May; 30(5):695-706. PubMed ID: 21161234 [TBL] [Abstract][Full Text] [Related]
19. Expression of alcohol acyltransferase is a potential determinant of fruit volatile ester variations in Capsicum. Koeda S; Noda T; Hachisu S; Kubo A; Tanaka Y; Yamamoto H; Ozaki S; Kinoshita M; Ohno K; Tanaka Y; Tomi K; Kamiyoshihara Y Plant Cell Rep; 2023 Nov; 42(11):1745-1756. PubMed ID: 37642676 [TBL] [Abstract][Full Text] [Related]
20. Functional validation of Capsicum frutescens aminotransferase gene involved in vanillylamine biosynthesis using Agrobacterium mediated genetic transformation studies in Nicotiana tabacum and Capsicum frutescens calli cultures. Gururaj HB; Padma MN; Giridhar P; Ravishankar GA Plant Sci; 2012 Oct; 195():96-105. PubMed ID: 22921003 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]