These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 31323179)

  • 1. Janus Segregation at the Carbon Nanotube-Catalyst Interface.
    Bets KV; Penev ES; Yakobson BI
    ACS Nano; 2019 Aug; 13(8):8836-8841. PubMed ID: 31323179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient Kinetic Selectivity in Nanotubes Growth on Solid Co-W Catalyst.
    Penev ES; Bets KV; Gupta N; Yakobson BI
    Nano Lett; 2018 Aug; 18(8):5288-5293. PubMed ID: 29979600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is the Carbon Nanotube-Catalyst Interface Clean during Growth?
    Qiu L; Ding F
    Small; 2022 Nov; 18(47):e2204437. PubMed ID: 36220345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Synergistic Effect of a Bimetallic Catalyst for the Synthesis of Carbon Nanotube Aerogels and their Predominant Chirality.
    Moon SY; Kim WS
    Chemistry; 2019 Oct; 25(59):13635-13639. PubMed ID: 31407390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How a zigzag carbon nanotube grows.
    Yuan Q; Ding F
    Angew Chem Int Ed Engl; 2015 May; 54(20):5924-8. PubMed ID: 25766145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Communication: Origin of the difference between carbon nanotube armchair and zigzag ends.
    Li Y; Ahuja R; Larsson JA
    J Chem Phys; 2014 Mar; 140(9):091102. PubMed ID: 24606345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DFT study of Fe-Ni core-shell nanoparticles: stability, catalytic activity, and interaction with carbon atom for single-walled carbon nanotube growth.
    Yang Z; Wang Q; Shan X; Li WQ; Chen GH; Zhu H
    J Chem Phys; 2015 Feb; 142(7):074306. PubMed ID: 25702014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulation of a nanofluidic energy absorption system: effects of the chiral vector of carbon nanotubes.
    Ganjiani SH; Hossein Nezhad A
    Phys Chem Chem Phys; 2018 Feb; 20(7):5140-5148. PubMed ID: 29393315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Floating Bimetallic Catalysts for Growing 30 cm-Long Carbon Nanotube Arrays with High Yields and Uniformity.
    Jiang Q; Wu Y; Wang F; Zhu P; Li R; Zhao Y; Huang Y; Wu X; Zhao S; Li Y; Wang B; Gao D; Zhang R
    Adv Mater; 2024 Aug; 36(32):e2402257. PubMed ID: 38831681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why nanotubes grow chiral.
    Artyukhov VI; Penev ES; Yakobson BI
    Nat Commun; 2014 Sep; 5():4892. PubMed ID: 25224858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleation and growth of single-walled nanotubes: the role of metallic catalysts.
    Gavillet J; Thibault J; Stéphan O; Amara H; Loiseau A; Bichara Ch; Gaspard JP; Ducastelle F
    J Nanosci Nanotechnol; 2004 Apr; 4(4):346-59. PubMed ID: 15296224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of Supported and Unsupported Catalytic Rh Nanoparticles: Effects on Nucleation of Single-Walled Carbon Nanotubes.
    Gomez-Ballesteros JL; Balbuena PB
    Langmuir; 2017 Oct; 33(42):11109-11119. PubMed ID: 28709379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of thermal evolution of copper nanoclusters encapsulated in carbon nanotubes: a molecular dynamics study.
    Akbarzadeh H; Abbaspour M; Salemi S; Abroodi M
    Phys Chem Chem Phys; 2015 May; 17(19):12747-59. PubMed ID: 25903839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microemulsion-templated synthesis of carbon nanotube-supported pd and rh nanoparticles for catalytic applications.
    Yoon B; Wai CM
    J Am Chem Soc; 2005 Dec; 127(49):17174-5. PubMed ID: 16332051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocatalyst structure as a template to define chirality of nascent single-walled carbon nanotubes.
    Gómez-Gualdrón DA; Zhao J; Balbuena PB
    J Chem Phys; 2011 Jan; 134(1):014705. PubMed ID: 21219018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth mechanism of carbon nanotubes from Co-W-C alloy catalyst revealed by atmospheric environmental transmission electron microscopy.
    Wang Y; Qiu L; Zhang L; Tang DM; Ma R; Ren CL; Ding F; Liu C; Cheng HM
    Sci Adv; 2022 Dec; 8(49):eabo5686. PubMed ID: 36475802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CFD-aerosol modeling of the effects of wall composition and inlet conditions on carbon nanotube catalyst particle activity.
    Brown DP; Nasibulin AG; Kauppinen EI
    J Nanosci Nanotechnol; 2008 Aug; 8(8):3803-19. PubMed ID: 19049135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth, new growth, and amplification of carbon nanotubes as a function of catalyst composition.
    Crouse CA; Maruyama B; Colorado R; Back T; Barron AR
    J Am Chem Soc; 2008 Jun; 130(25):7946-54. PubMed ID: 18507464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalyst design for carbon nanotube growth using atomistic modeling.
    Pint CL; Bozzolo G; Hauge R
    Nanotechnology; 2008 Oct; 19(40):405704. PubMed ID: 21832633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endofullerenes with metal atoms inside as precursors of nuclei of single-walled carbon nanotubes.
    Krestinin AV; Kislov MB; Ryabenko AG
    J Nanosci Nanotechnol; 2004 Apr; 4(4):390-7. PubMed ID: 15296228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.