BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 31323351)

  • 1. Quantifying heart valve interstitial cell contractile state using highly tunable poly(ethylene glycol) hydrogels.
    Khang A; Gonzalez Rodriguez A; Schroeder ME; Sansom J; Lejeune E; Anseth KS; Sacks MS
    Acta Biomater; 2019 Sep; 96():354-367. PubMed ID: 31323351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of cell-matrix interactions on VIC phenotype and tissue deposition in 3D PEG hydrogels.
    Gould ST; Anseth KS
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E443-E453. PubMed ID: 24130082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of aortic valve interstitial cell-induced 3D remodeling of poly(ethylene glycol) hydrogel environments using an inverse finite element approach.
    Khang A; Steinman J; Tuscher R; Feng X; Sacks MS
    Acta Biomater; 2023 Apr; 160():123-133. PubMed ID: 36812955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On intrinsic stress fiber contractile forces in semilunar heart valve interstitial cells using a continuum mixture model.
    Sakamoto Y; Buchanan RM; Sacks MS
    J Mech Behav Biomed Mater; 2016 Feb; 54():244-58. PubMed ID: 26476967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic stiffening of poly(ethylene glycol)-based hydrogels to direct valvular interstitial cell phenotype in a three-dimensional environment.
    Mabry KM; Lawrence RL; Anseth KS
    Biomaterials; 2015 May; 49():47-56. PubMed ID: 25725554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Inverse Modeling Approach to Estimate Three-Dimensional Aortic Valve Interstitial Cell Stress Fiber Force Levels.
    Khang A; Meyer K; Sacks MS
    J Biomech Eng; 2023 Dec; 145(12):. PubMed ID: 37715307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional analysis of hydrogel-imbedded aortic valve interstitial cell shape and its relation to contractile behavior.
    Khang A; Nguyen Q; Feng X; Howsmon DP; Sacks MS
    Acta Biomater; 2023 Jun; 163():194-209. PubMed ID: 35085795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human iPSC-derived mesenchymal stem cells encapsulated in PEGDA hydrogels mature into valve interstitial-like cells.
    Nachlas ALY; Li S; Jha R; Singh M; Xu C; Davis ME
    Acta Biomater; 2018 Apr; 71():235-246. PubMed ID: 29505894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active tissue stiffness modulation controls valve interstitial cell phenotype and osteogenic potential in 3D culture.
    Duan B; Yin Z; Hockaday Kang L; Magin RL; Butcher JT
    Acta Biomater; 2016 May; 36():42-54. PubMed ID: 26947381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ascorbic acid promotes extracellular matrix deposition while preserving valve interstitial cell quiescence within 3D hydrogel scaffolds.
    Wu Y; Puperi DS; Grande-Allen KJ; West JL
    J Tissue Eng Regen Med; 2017 Jul; 11(7):1963-1973. PubMed ID: 26631842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype.
    Mabry KM; Payne SZ; Anseth KS
    Biomaterials; 2016 Jan; 74():31-41. PubMed ID: 26433490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering.
    Zhang X; Xu B; Puperi DS; Yonezawa AL; Wu Y; Tseng H; Cuchiara ML; West JL; Grande-Allen KJ
    Acta Biomater; 2015 Mar; 14():11-21. PubMed ID: 25433168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of valvular interstitial cell function in three dimensional matrix metalloproteinase degradable PEG hydrogels.
    Benton JA; Fairbanks BD; Anseth KS
    Biomaterials; 2009 Dec; 30(34):6593-603. PubMed ID: 19747725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myofibroblastic activation of valvular interstitial cells is modulated by spatial variations in matrix elasticity and its organization.
    Ma H; Killaars AR; DelRio FW; Yang C; Anseth KS
    Biomaterials; 2017 Jul; 131():131-144. PubMed ID: 28390245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directing valvular interstitial cell myofibroblast-like differentiation in a hybrid hydrogel platform.
    Hjortnaes J; Camci-Unal G; Hutcheson JD; Jung SM; Schoen FJ; Kluin J; Aikawa E; Khademhosseini A
    Adv Healthc Mater; 2015 Jan; 4(1):121-30. PubMed ID: 24958085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitral valvular interstitial cell responses to substrate stiffness depend on age and anatomic region.
    Stephens EH; Durst CA; West JL; Grande-Allen KJ
    Acta Biomater; 2011 Jan; 7(1):75-82. PubMed ID: 20624493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the role of substrate stiffness in the persistence of valvular interstitial cell activation.
    Quinlan AM; Billiar KL
    J Biomed Mater Res A; 2012 Sep; 100(9):2474-82. PubMed ID: 22581728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells.
    Peyton SR; Raub CB; Keschrumrus VP; Putnam AJ
    Biomaterials; 2006 Oct; 27(28):4881-93. PubMed ID: 16762407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-Dimensional High-Throughput Cell Encapsulation Platform to Study Changes in Cell-Matrix Interactions.
    Mabry KM; Schroeder ME; Payne SZ; Anseth KS
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):21914-22. PubMed ID: 27050338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Three-Dimensional Correlation Between Myofibroblast Shape and Contraction.
    Khang A; Lejeune E; Abbaspour A; Howsmon DP; Sacks MS
    J Biomech Eng; 2021 Sep; 143(9):. PubMed ID: 33876206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.