These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 31323421)
1. Proteomic investigation of intra-tumor heterogeneity using network-based contextualization - A case study on prostate cancer. Goh WWB; Zhao Y; Sue AC; Guo T; Wong L J Proteomics; 2019 Aug; 206():103446. PubMed ID: 31323421 [TBL] [Abstract][Full Text] [Related]
2. Plumbagin elicits differential proteomic responses mainly involving cell cycle, apoptosis, autophagy, and epithelial-to-mesenchymal transition pathways in human prostate cancer PC-3 and DU145 cells. Qiu JX; Zhou ZW; He ZX; Zhao RJ; Zhang X; Yang L; Zhou SF; Mao ZF Drug Des Devel Ther; 2015; 9():349-417. PubMed ID: 25609920 [TBL] [Abstract][Full Text] [Related]
3. Identification of clinically relevant protein targets in prostate cancer with 2D-DIGE coupled mass spectrometry and systems biology network platform. Ummanni R; Mundt F; Pospisil H; Venz S; Scharf C; Barett C; Fälth M; Köllermann J; Walther R; Schlomm T; Sauter G; Bokemeyer C; Sültmann H; Schuppert A; Brümmendorf TH; Balabanov S PLoS One; 2011 Feb; 6(2):e16833. PubMed ID: 21347291 [TBL] [Abstract][Full Text] [Related]
4. Mass spectrometry-based expression profiling of clinical prostate cancer. Wright ME; Han DK; Aebersold R Mol Cell Proteomics; 2005 Apr; 4(4):545-54. PubMed ID: 15695425 [TBL] [Abstract][Full Text] [Related]
5. Prostate cancer proteomics: Current trends and future perspectives for biomarker discovery. Tanase CP; Codrici E; Popescu ID; Mihai S; Enciu AM; Necula LG; Preda A; Ismail G; Albulescu R Oncotarget; 2017 Mar; 8(11):18497-18512. PubMed ID: 28061466 [TBL] [Abstract][Full Text] [Related]
6. Extracellular Vesicle Proteome in Prostate Cancer: A Comparative Analysis of Mass Spectrometry Studies. Bernardino RMM; Leão R; Henrique R; Pinheiro LC; Kumar P; Suravajhala P; Beck HC; Carvalho AS; Matthiesen R Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948404 [TBL] [Abstract][Full Text] [Related]
8. Fuzzy-FishNET: a highly reproducible protein complex-based approach for feature selection in comparative proteomics. Goh WW BMC Med Genomics; 2016 Dec; 9(Suppl 3):67. PubMed ID: 28117654 [TBL] [Abstract][Full Text] [Related]
9. Innovative proteomic approaches for cancer biomarker discovery. Faca V; Krasnoselsky A; Hanash S Biotechniques; 2007 Sep; 43(3):279, 281-3, 285. PubMed ID: 17907570 [TBL] [Abstract][Full Text] [Related]
10. Proteomic approaches to biomarker discovery in prostate and bladder cancers. Adam BL; Vlahou A; Semmes OJ; Wright GL Proteomics; 2001 Oct; 1(10):1264-70. PubMed ID: 11721637 [TBL] [Abstract][Full Text] [Related]
11. Using feature selection and Bayesian network identify cancer subtypes based on proteomic data. Wang Y; Gao X; Ru X; Sun P; Wang J J Proteomics; 2023 May; 280():104895. PubMed ID: 37024076 [TBL] [Abstract][Full Text] [Related]
12. The Proteome of Prostate Cancer Bone Metastasis Reveals Heterogeneity with Prognostic Implications. Iglesias-Gato D; Thysell E; Tyanova S; Crnalic S; Santos A; Lima TS; Geiger T; Cox J; Widmark A; Bergh A; Mann M; Flores-Morales A; Wikström P Clin Cancer Res; 2018 Nov; 24(21):5433-5444. PubMed ID: 30042207 [No Abstract] [Full Text] [Related]
14. A streamlined platform for high-content functional proteomics of primary human specimens. Jessani N; Niessen S; Wei BQ; Nicolau M; Humphrey M; Ji Y; Han W; Noh DY; Yates JR; Jeffrey SS; Cravatt BF Nat Methods; 2005 Sep; 2(9):691-7. PubMed ID: 16118640 [TBL] [Abstract][Full Text] [Related]
15. In silico identification of key genes and signaling pathways targeted by a panel of signature microRNAs in prostate cancer. Baruah MM; Sharma N Med Oncol; 2019 Apr; 36(5):43. PubMed ID: 30937635 [TBL] [Abstract][Full Text] [Related]
16. Probing the prostate tumour microenvironment I: impact of glucose deprivation on a cell model of prostate cancer progression. Tonry C; Armstrong J; Pennington SR Oncotarget; 2017 Feb; 8(9):14374-14394. PubMed ID: 28086232 [TBL] [Abstract][Full Text] [Related]
17. Quantitative Proteomics of TRAMP Mice Combined with Bioinformatics Analysis Reveals That PDGF-B Regulatory Network Plays a Key Role in Prostate Cancer Progression. Zhang Y; Wang D; Li M; Wei X; Liu S; Zhao M; Liu C; Wang X; Jiang X; Li X; Zhang S; Bergquist J; Wang B; Yang C; Mi J; Tian G J Proteome Res; 2018 Jul; 17(7):2401-2411. PubMed ID: 29863873 [TBL] [Abstract][Full Text] [Related]
18. Biomarker identification for prostate cancer and lymph node metastasis from microarray data and protein interaction network using gene prioritization method. Arias CR; Yeh HY; Soo VW ScientificWorldJournal; 2012; 2012():842727. PubMed ID: 22654636 [TBL] [Abstract][Full Text] [Related]
19. Identification of 14-3-3zeta associated protein networks in oral cancer. Matta A; Masui O; Siu KW; Ralhan R Proteomics; 2016 Apr; 16(7):1079-89. PubMed ID: 26857332 [TBL] [Abstract][Full Text] [Related]
20. Mass spectrometry-based proteomics: from cancer biology to protein biomarkers, drug targets, and clinical applications. Jimenez CR; Verheul HM Am Soc Clin Oncol Educ Book; 2014; ():e504-10. PubMed ID: 24857147 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]