BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 31323433)

  • 21. More than a messenger: Alternative splicing as a therapeutic target.
    Black AJ; Gamarra JR; Giudice J
    Biochim Biophys Acta Gene Regul Mech; 2019; 1862(11-12):194395. PubMed ID: 31271898
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distinct pathological signatures in human cellular models of myotonic dystrophy subtypes.
    Kim EY; Barefield DY; Vo AH; Gacita AM; Schuster EJ; Wyatt EJ; Davis JL; Dong B; Sun C; Page P; Dellefave-Castillo L; Demonbreun A; Zhang HF; McNally EM
    JCI Insight; 2019 Mar; 4(6):. PubMed ID: 30730308
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A CTG repeat-selective chemical screen identifies microtubule inhibitors as selective modulators of toxic CUG RNA levels.
    Reddy K; Jenquin JR; McConnell OL; Cleary JD; Richardson JI; Pinto BS; Haerle MC; Delgado E; Planco L; Nakamori M; Wang ET; Berglund JA
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):20991-21000. PubMed ID: 31570586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RAN Translation Regulated by Muscleblind Proteins in Myotonic Dystrophy Type 2.
    Zu T; Cleary JD; Liu Y; Bañez-Coronel M; Bubenik JL; Ayhan F; Ashizawa T; Xia G; Clark HB; Yachnis AT; Swanson MS; Ranum LPW
    Neuron; 2017 Sep; 95(6):1292-1305.e5. PubMed ID: 28910618
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Myotonic dystrophy, when simple repeats reveal complex pathogenic entities: new findings and future challenges.
    Sicot G; Gourdon G; Gomes-Pereira M
    Hum Mol Genet; 2011 Oct; 20(R2):R116-23. PubMed ID: 21821673
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systemic delivery of a Peptide-linked morpholino oligonucleotide neutralizes mutant RNA toxicity in a mouse model of myotonic dystrophy.
    Leger AJ; Mosquea LM; Clayton NP; Wu IH; Weeden T; Nelson CA; Phillips L; Roberts E; Piepenhagen PA; Cheng SH; Wentworth BM
    Nucleic Acid Ther; 2013 Apr; 23(2):109-17. PubMed ID: 23308382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fuchs' Endothelial Corneal Dystrophy and RNA Foci in Patients With Myotonic Dystrophy.
    Mootha VV; Hansen B; Rong Z; Mammen PP; Zhou Z; Xing C; Gong X
    Invest Ophthalmol Vis Sci; 2017 Sep; 58(11):4579-4585. PubMed ID: 28886202
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Muscleblind family of proteins: an emerging class of regulators of developmentally programmed alternative splicing.
    Pascual M; Vicente M; Monferrer L; Artero R
    Differentiation; 2006 Mar; 74(2-3):65-80. PubMed ID: 16533306
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Context matters: Regulation of splice donor usage.
    Ptok J; Müller L; Theiss S; Schaal H
    Biochim Biophys Acta Gene Regul Mech; 2019; 1862(11-12):194391. PubMed ID: 31202784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How RNA structure dictates the usage of a critical exon of spinal muscular atrophy gene.
    Singh NN; Singh RN
    Biochim Biophys Acta Gene Regul Mech; 2019; 1862(11-12):194403. PubMed ID: 31323435
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Partners in crime: Proteins implicated in RNA repeat expansion diseases.
    Baud A; Derbis M; Tutak K; Sobczak K
    Wiley Interdiscip Rev RNA; 2022 Jul; 13(4):e1709. PubMed ID: 35229468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nuclear localization of MBNL1: splicing-mediated autoregulation and repression of repeat-derived aberrant proteins.
    Kino Y; Washizu C; Kurosawa M; Oma Y; Hattori N; Ishiura S; Nukina N
    Hum Mol Genet; 2015 Feb; 24(3):740-56. PubMed ID: 25274774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alternative splicing regulation by Muscleblind proteins: from development to disease.
    Fernandez-Costa JM; Llamusi MB; Garcia-Lopez A; Artero R
    Biol Rev Camb Philos Soc; 2011 Nov; 86(4):947-58. PubMed ID: 21489124
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intronic RNA: Ad'junk' mediator of post-transcriptional gene regulation.
    Neil CR; Fairbrother WG
    Biochim Biophys Acta Gene Regul Mech; 2019; 1862(11-12):194439. PubMed ID: 31682938
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Triplet repeats, RNA secondary structure and toxic gain-of-function models for pathogenesis.
    Galvão R; Mendes-Soares L; Câmara J; Jaco I; Carmo-Fonseca M
    Brain Res Bull; 2001 Oct-Nov 1; 56(3-4):191-201. PubMed ID: 11719250
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sense and Antisense DMPK RNA Foci Accumulate in DM1 Tissues during Development.
    Michel L; Huguet-Lachon A; Gourdon G
    PLoS One; 2015; 10(9):e0137620. PubMed ID: 26339785
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reduced cytoplasmic MBNL1 is an early event in a brain-specific mouse model of myotonic dystrophy.
    Wang PY; Lin YM; Wang LH; Kuo TY; Cheng SJ; Wang GS
    Hum Mol Genet; 2017 Jun; 26(12):2247-2257. PubMed ID: 28369378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Myotonic dystrophy: RNA-mediated muscle disease.
    Wheeler TM; Thornton CA
    Curr Opin Neurol; 2007 Oct; 20(5):572-6. PubMed ID: 17885447
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Daunorubicin reduces MBNL1 sequestration caused by CUG-repeat expansion and rescues cardiac dysfunctions in a
    Chakraborty M; Sellier C; Ney M; Pascal V; Charlet-Berguerand N; Artero R; Llamusi B
    Dis Model Mech; 2018 Apr; 11(4):. PubMed ID: 29592894
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deregulation of RNA Metabolism in Microsatellite Expansion Diseases.
    Misra C; Lin F; Kalsotra A
    Adv Neurobiol; 2018; 20():213-238. PubMed ID: 29916021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.