These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 31323830)

  • 21. Daytime Radiative Cooling Coating Based on the Y
    Du T; Niu J; Wang L; Bai J; Wang S; Li S; Fan Y
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51351-51360. PubMed ID: 36332077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-Dimensional Printable Nanoporous Polymer Matrix Composites for Daytime Radiative Cooling.
    Zhou K; Li W; Patel BB; Tao R; Chang Y; Fan S; Diao Y; Cai L
    Nano Lett; 2021 Feb; 21(3):1493-1499. PubMed ID: 33464912
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Superhydrophobic SiO
    Sun Y; He H; Huang X; Guo Z
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4799-4813. PubMed ID: 36635243
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Radiative Cooling: Principles, Progress, and Potentials.
    Hossain MM; Gu M
    Adv Sci (Weinh); 2016 Jul; 3(7):1500360. PubMed ID: 27812478
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Superhydrophobic Porous Coating of Polymer Composite for Scalable and Durable Daytime Radiative Cooling.
    Wang HD; Xue CH; Ji ZY; Huang MC; Jiang ZH; Liu BY; Deng FQ; An QF; Guo XJ
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):51307-51317. PubMed ID: 36320188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vapor condensation with daytime radiative cooling.
    Zhou M; Song H; Xu X; Shahsafi A; Qu Y; Xia Z; Ma Z; Kats MA; Zhu J; Ooi BS; Gan Q; Yu Z
    Proc Natl Acad Sci U S A; 2021 Apr; 118(14):. PubMed ID: 33790008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanically Switchable Multifunctional Device for Regulating Passive Radiative Cooling and Solar Heating.
    Tao S; Han J; Xu Y; Fang Z; Ni Y; Fang L; Lu C; Xu Z
    ACS Appl Mater Interfaces; 2023 Apr; 15(13):17123-17133. PubMed ID: 36971527
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling.
    Rephaeli E; Raman A; Fan S
    Nano Lett; 2013 Apr; 13(4):1457-61. PubMed ID: 23461597
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scalable Colored Subambient Radiative Coolers Based on a Polymer-Tamm Photonic Structure.
    Huang T; Chen Q; Huang J; Lu Y; Xu H; Zhao M; Xu Y; Song W
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):16277-16287. PubMed ID: 36930799
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selective spectral absorption of nanofibers for color-preserving daytime radiative cooling.
    Li X; Xu H; Yang Y; Li F; Ramakrishna S; Yu J; Ji D; Qin X
    Mater Horiz; 2023 Jul; 10(7):2487-2495. PubMed ID: 37039748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sub-ambient full-color passive radiative cooling under sunlight based on efficient quantum-dot photoluminescence.
    Wang X; Zhang Q; Wang S; Jin C; Zhu B; Su Y; Dong X; Liang J; Lu Z; Zhou L; Li W; Zhu S; Zhu J
    Sci Bull (Beijing); 2022 Sep; 67(18):1874-1881. PubMed ID: 36546301
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subambient daytime radiative cooling textile based on nanoprocessed silk.
    Zhu B; Li W; Zhang Q; Li D; Liu X; Wang Y; Xu N; Wu Z; Li J; Li X; Catrysse PB; Xu W; Fan S; Zhu J
    Nat Nanotechnol; 2021 Dec; 16(12):1342-1348. PubMed ID: 34750560
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle.
    Chen Z; Zhu L; Raman A; Fan S
    Nat Commun; 2016 Dec; 7():13729. PubMed ID: 27959339
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Green-Manufactured and Recyclable Coatings for Subambient Daytime Radiative Cooling.
    Liu R; Zhou Z; Mo X; Liu P; Hu B; Duan J; Zhou J
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46972-46979. PubMed ID: 36215717
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioinspired "Skin" with Cooperative Thermo-Optical Effect for Daytime Radiative Cooling.
    Yang M; Zou W; Guo J; Qian Z; Luo H; Yang S; Zhao N; Pattelli L; Xu J; Wiersma DS
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25286-25293. PubMed ID: 32378874
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent Progress in Daytime Radiative Cooling: Advanced Material Designs and Applications.
    Zhang Q; Wang S; Wang X; Jiang Y; Li J; Xu W; Zhu B; Zhu J
    Small Methods; 2022 Apr; 6(4):e2101379. PubMed ID: 35212488
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Performance of a superamphiphobic self-cleaning passive subambient daytime radiative cooling coating on grain and oil storage structures.
    Cai Y; Zhang Z; Yang Z; Fang Z; Chen S; Zhang X; Li W; Zhang Y; Zhang H; Sun Z; Zhang Y; Li Y; Liu L; Zhang W; Xue X
    Heliyon; 2023 Apr; 9(4):e14599. PubMed ID: 37089341
    [TBL] [Abstract][Full Text] [Related]  

  • 38. From Chitosan to Chitin: Bio-Inspired Thin Films for Passive Daytime Radiative Cooling.
    Lauster T; Mauel A; Herrmann K; Veitengruber V; Song Q; Senker J; Retsch M
    Adv Sci (Weinh); 2023 Apr; 10(11):e2206616. PubMed ID: 36793085
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly solar reflectance and infrared transparent porous coating for non-contact heat dissipations.
    Chen M; Pang D; Yan H
    iScience; 2022 Aug; 25(8):104726. PubMed ID: 35865137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Super-Large-Scale Hierarchically Porous Films Based on Self-Assembled Eye-Like Air Pores for High-Performance Daytime Radiative Cooling.
    Tian Q; Tu X; Yang L; Liu H; Zhou Y; Xing Y; Chen Z; Fan S; Evans J; He S
    Small; 2022 Dec; 18(51):e2205091. PubMed ID: 36328709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.