These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31323846)

  • 1. Comprehensive Improvement of the Sensitivity and Detectability of a Large-Aperture Electromagnetic Wear Particle Detector.
    Jia R; Ma B; Zheng C; Ba X; Wang L; Du Q; Wang K
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31323846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic Properties of Ferromagnetic Particles under Alternating Magnetic Fields: Focus on Particle Detection Sensor Applications.
    Jia R; Ma B; Zheng C; Wang L; Ba X; Du Q; Wang K
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research on the Influence of Coil LC Parallel Resonance on Detection Effect of Inductive Wear Debris Sensor.
    Huang H; He S; Xie X; Feng W; Zhen H
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the Detection Ability of Inductive Micro-Sensor for Non-Ferromagnetic Wear Debris.
    Wang M; Shi H; Zhang H; Huo D; Xie Y; Su J
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33333885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation and Optimization Design of Inductive Wear Particle Sensor.
    Fan B; Wang L; Liu Y; Zhang P; Feng S
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving Sensitivity of a Micro Inductive Sensor for Wear Debris Detection with Magnetic Powder Surrounded.
    Liu L; Chen L; Wang S; Yin Y; Liu D; Wu S; Liu Z; Pan X
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31266180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noise Optimization Design of Frequency-Domain Air-Core Sensor Based on Capacitor Tuning Technology.
    Yu S; Wei Y; Zhang J; Wang S
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31905779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel On-Chip Impedance Sensor for the Detection of Particle Contamination in Hydraulic Oil.
    Zhang H; Zeng L; Teng H; Zhang X
    Micromachines (Basel); 2017 Aug; 8(8):. PubMed ID: 30400440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the Investigation of Frequency Characteristics of a Novel Inductive Debris Sensor.
    Wu X; Liu H; Qian Z; Qian Z; Liu D; Li K; Wang G
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Parameter Research of Time-Harmonic Magnetic Field Sensor Based on PDMS in Microfluidic Technology.
    Bai C; Zhang H; Wang C; Ilerioluwa Joseph L; Wang Q; Xie Y; Li G
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32899715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MRI surface-coil pair with strong inductive coupling.
    Mett RR; Sidabras JW; Hyde JS
    Rev Sci Instrum; 2016 Dec; 87(12):124704. PubMed ID: 28040909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain.
    Wang XG; Shang XL; Lin J
    Rev Sci Instrum; 2016 May; 87(5):054501. PubMed ID: 27250444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective sensor properties and sensitivity considerations of a dynamic co-resonantly coupled cantilever sensor.
    Körner J
    Beilstein J Nanotechnol; 2018; 9():2546-2560. PubMed ID: 30345217
    [No Abstract]   [Full Text] [Related]  

  • 14. Design and characterization of an electromagnetic probe for distinguishing morphological differences in soft tissues.
    Jones TH; Javor J; Sequin EK; West JD; Prakash S; Subramaniam VV
    Rev Sci Instrum; 2018 Aug; 89(8):084302. PubMed ID: 30184712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring of Non-Ferrous Wear Debris in Hydraulic Oil by Detecting the Equivalent Resistance of Inductive Sensors.
    Zeng L; Zhang H; Wang Q; Zhang X
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on Coil Impedance of Self-Inductive Displacement Sensor Considering Core Eddy Current.
    Ren Z; Li H; Yu W
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inductive Magnetic Nanoparticle Sensor based on Microfluidic Chip Oil Detection Technology.
    Bai C; Zhang H; Zeng L; Zhao X; Ma L
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32050692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Optimized Air-Core Coil Sensor with a Magnetic Flux Compensation Structure Suitable to the Helicopter TEM System.
    Chen C; Liu F; Lin J; Zhu K; Wang Y
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27077862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Research of Inductive Oil Pollutant Detection Sensor Based on High Gradient Magnetic Field Structure.
    Li W; Bai C; Wang C; Zhang H; Ilerioluwa L; Wang X; Yu S; Li G
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34070828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Impedance Micro-Sensor for Metal Debris Monitoring of Hydraulic Oil.
    Zhang H; Shi H; Li W; Ma L; Zhao X; Xu Z; Wang C; Xie Y; Zhang Y
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33546510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.