BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 31323892)

  • 1. Computational Processing and Quality Control of Hi-C, Capture Hi-C and Capture-C Data.
    Hansen P; Gargano M; Hecht J; Ibn-Salem J; Karlebach G; Roehr JT; Robinson PN
    Genes (Basel); 2019 Jul; 10(7):. PubMed ID: 31323892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processing and Analysis of Hi-C Data on Bacteria.
    Hofmann A; Heermann DW
    Methods Mol Biol; 2018; 1837():19-31. PubMed ID: 30109603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HiC-bench: comprehensive and reproducible Hi-C data analysis designed for parameter exploration and benchmarking.
    Lazaris C; Kelly S; Ntziachristos P; Aifantis I; Tsirigos A
    BMC Genomics; 2017 Jan; 18(1):22. PubMed ID: 28056762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting Spatial Chromatin Organization by Chromosome Conformation Capture II: Genome-Wide Profiling by Hi-C.
    Vietri Rudan M; Hadjur S; Sexton T
    Methods Mol Biol; 2017; 1589():47-74. PubMed ID: 26900130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifaceted Hi-C benchmarking: what makes a difference in chromosome-scale genome scaffolding?
    Kadota M; Nishimura O; Miura H; Tanaka K; Hiratani I; Kuraku S
    Gigascience; 2020 Jan; 9(1):. PubMed ID: 31919520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Analysis of Hi-C Data.
    Forcato M; Bicciato S
    Methods Mol Biol; 2021; 2157():103-125. PubMed ID: 32820401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3DIV: A 3D-genome Interaction Viewer and database.
    Yang D; Jang I; Choi J; Kim MS; Lee AJ; Kim H; Eom J; Kim D; Jung I; Lee B
    Nucleic Acids Res; 2018 Jan; 46(D1):D52-D57. PubMed ID: 29106613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of 3D Interactions Between Promoters and Distal Regulatory Elements with Promoter Capture Hi-C (PCHi-C).
    Karasu N; Sexton T
    Methods Mol Biol; 2021; 2351():229-248. PubMed ID: 34382193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hi-C 2.0: An optimized Hi-C procedure for high-resolution genome-wide mapping of chromosome conformation.
    Belaghzal H; Dekker J; Gibcus JH
    Methods; 2017 Jul; 123():56-65. PubMed ID: 28435001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization and quality control of genome-wide Hi-C library preparation.
    Zhang XY; He C; Ye BY; Xie DJ; Shi ML; Zhang Y; Shen WL; Li P; Zhao ZH
    Yi Chuan; 2017 Sep; 39(9):847-855. PubMed ID: 28936982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution.
    Ma W; Ay F; Lee C; Gulsoy G; Deng X; Cook S; Hesson J; Cavanaugh C; Ware CB; Krumm A; Shendure J; Blau CA; Disteche CM; Noble WS; Duan Z
    Methods; 2018 Jun; 142():59-73. PubMed ID: 29382556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chrom-Lasso: a lasso regression-based model to detect functional interactions using Hi-C data.
    Lu J; Wang X; Sun K; Lan X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34013331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Hi-C for Plants: An Improved Method to Detect Long-Range Chromatin Interactions.
    Padmarasu S; Himmelbach A; Mascher M; Stein N
    Methods Mol Biol; 2019; 1933():441-472. PubMed ID: 30945203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iteratively improving Hi-C experiments one step at a time.
    Golloshi R; Sanders JT; McCord RP
    Methods; 2018 Jun; 142():47-58. PubMed ID: 29723572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MaxHiC: A robust background correction model to identify biologically relevant chromatin interactions in Hi-C and capture Hi-C experiments.
    Alinejad-Rokny H; Ghavami Modegh R; Rabiee HR; Ramezani Sarbandi E; Rezaie N; Tam KT; Forrest ARR
    PLoS Comput Biol; 2022 Jun; 18(6):e1010241. PubMed ID: 35749574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MSTD: an efficient method for detecting multi-scale topological domains from symmetric and asymmetric 3D genomic maps.
    Ye Y; Gao L; Zhang S
    Nucleic Acids Res; 2019 Jun; 47(11):e65. PubMed ID: 30941409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FreeHi-C simulates high-fidelity Hi-C data for benchmarking and data augmentation.
    Zheng Y; Keleş S
    Nat Methods; 2020 Jan; 17(1):37-40. PubMed ID: 31712779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines.
    Khalil AIS; Muzaki SRBM; Chattopadhyay A; Sanyal A
    BMC Bioinformatics; 2020 Nov; 21(1):506. PubMed ID: 33160308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Practical Analysis of Hi-C Data: Generating A/B Compartment Profiles.
    Miura H; Poonperm R; Takahashi S; Hiratani I
    Methods Mol Biol; 2018; 1861():221-245. PubMed ID: 30218370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosome Conformation Capture for Large Genomes.
    Kawaguchi A; Tanaka EM
    Methods Mol Biol; 2023; 2562():291-318. PubMed ID: 36272084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.