These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 31323959)
1. Surface Roughness Characterisation and Analysis of the Electron Beam Melting (EBM) Process. Galati M; Minetola P; Rizza G Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31323959 [TBL] [Abstract][Full Text] [Related]
2. Directionally-Dependent Mechanical Properties of Ti6Al4V Manufactured by Electron Beam Melting (EBM) and Selective Laser Melting (SLM). Pasang T; Tavlovich B; Yannay O; Jackson B; Fry M; Tao Y; Turangi C; Wang JC; Jiang CP; Sato Y; Tsukamoto M; Misiolek WZ Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34203344 [TBL] [Abstract][Full Text] [Related]
3. Influence of Inherent Surface and Internal Defects on Mechanical Properties of Additively Manufactured Ti6Al4V Alloy: Comparison between Selective Laser Melting and Electron Beam Melting. Fousová M; Vojtěch D; Doubrava K; Daniel M; Lin CF Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29614712 [TBL] [Abstract][Full Text] [Related]
4. Effects of Processing Parameters on Surface Roughness of Additive Manufactured Ti-6Al-4V via Electron Beam Melting. Wang P; Sin WJ; Nai MLS; Wei J Materials (Basel); 2017 Sep; 10(10):. PubMed ID: 28937638 [TBL] [Abstract][Full Text] [Related]
5. Effect of Various Peening Methods on the Fatigue Properties of Titanium Alloy Ti6Al4V Manufactured by Direct Metal Laser Sintering and Electron Beam Melting. Soyama H; Takeo F Materials (Basel); 2020 May; 13(10):. PubMed ID: 32408590 [TBL] [Abstract][Full Text] [Related]
6. Compression Behavior of EBM Printed Auxetic Chiral Structures. Gunaydin K; Türkmen HS; Airoldi A; Grasso M; Sala G; Grande AM Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208060 [TBL] [Abstract][Full Text] [Related]
7. Effects of Build Orientation on Surface Morphology and Bone Cell Activity of Additively Manufactured Ti6Al4V Specimens. Weißmann V; Drescher P; Seitz H; Hansmann H; Bader R; Seyfarth A; Klinder A; Jonitz-Heincke A Materials (Basel); 2018 May; 11(6):. PubMed ID: 29844256 [TBL] [Abstract][Full Text] [Related]
8. Downskin Surface Roughness Prediction with Machine Learning for As-Built CM247LC Fabricated Via Powder Bed Fusion with a Laser Beam. Koo J; Lee S; Baek AMC; Park E; Kim N 3D Print Addit Manuf; 2024 Aug; 11(4):1510-1522. PubMed ID: 39360138 [TBL] [Abstract][Full Text] [Related]
9. Micro- to Macroroughness of Additively Manufactured Titanium Implants in Terms of Coagulation and Contact Activation. Klingvall Ek R; Hong J; Thor A; Bäckström M; Rännar LE Int J Oral Maxillofac Implants; 2017; 32(3):565-574. PubMed ID: 28494040 [TBL] [Abstract][Full Text] [Related]
10. Characterization of Spatter and Sublimation in Alloy 718 during Electron Beam Melting. Raza A; Hryha E Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683546 [TBL] [Abstract][Full Text] [Related]
11. Smoke Suppression in Electron Beam Melting of Inconel 718 Alloy Powder Based on Insulator-Metal Transition of Surface Oxide Film by Mechanical Stimulation. Chiba A; Daino Y; Aoyagi K; Yamanaka K Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443184 [TBL] [Abstract][Full Text] [Related]
12. Effects of Electropolishing on Mechanical Properties and Bio-Corrosion of Ti6Al4V Fabricated by Electron Beam Melting Additive Manufacturing. Wu YC; Kuo CN; Chung YC; Ng CH; Huang JC Materials (Basel); 2019 May; 12(9):. PubMed ID: 31067651 [TBL] [Abstract][Full Text] [Related]
13. Tailoring the thermal conductivity of the powder bed in Electron Beam Melting (EBM) Additive Manufacturing. Smith CJ; Tammas-Williams S; Hernandez-Nava E; Todd I Sci Rep; 2017 Sep; 7(1):10514. PubMed ID: 28874795 [TBL] [Abstract][Full Text] [Related]
14. Energy consumption assessment in manufacturing Ti6Al4V electron beam melted parts post-processed by machining. Cozzolino E; Franchitti S; Borrelli R; Pirozzi C; Astarita A Int J Adv Manuf Technol; 2023; 125(3-4):1289-1303. PubMed ID: 36644782 [TBL] [Abstract][Full Text] [Related]
15. Encapsulation of Electron Beam Melting Produced Alloy 718 to Reduce Surface Connected Defects by Hot Isostatic Pressing. Zafer YE; Goel S; Ganvir A; Jansson A; Joshi S Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32182804 [TBL] [Abstract][Full Text] [Related]
16. In vitro dermal and epidermal cellular response to titanium alloy implants fabricated with electron beam melting. Springer JC; Harrysson OL; Marcellin-Little DJ; Bernacki SH Med Eng Phys; 2014 Oct; 36(10):1367-72. PubMed ID: 25080895 [TBL] [Abstract][Full Text] [Related]
17. An Innovative Method to Analyse the Geometrical Accuracy of Ti6Al4V Octet-Truss Lattice Structures. Bellini C; Borrelli R; Di Caprio F; Di Cocco V; Franchitti S; Iacoviello F; Sorrentino L Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984252 [TBL] [Abstract][Full Text] [Related]
18. Corrosion of 3D-Printed Orthopaedic Implant Materials. Mah D; Pelletier MH; Lovric V; Walsh WR Ann Biomed Eng; 2019 Jan; 47(1):162-173. PubMed ID: 30112709 [TBL] [Abstract][Full Text] [Related]
19. Mapping the Tray of Electron Beam Melting of Ti-6Al-4V: Properties and Microstructure. Tiferet E; Ganor M; Zolotaryov D; Garkun A; Hadjadj A; Chonin M; Ganor Y; Noiman D; Halevy I; Tevet O; Yeheskel O Materials (Basel); 2019 May; 12(9):. PubMed ID: 31067683 [TBL] [Abstract][Full Text] [Related]
20. Discrepancy of complete-arch titanium frameworks manufactured using selective laser melting and electron beam melting additive manufacturing technologies. Revilla-León M; Ceballos L; Martínez-Klemm I; Özcan M J Prosthet Dent; 2018 Dec; 120(6):942-947. PubMed ID: 30006219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]