These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31323986)

  • 1. Titanate Nanowires as One-Dimensional Hot Spot Generators for Broadband Au-TiO
    Negrín-Montecelo Y; Testa-Anta M; Marín-Caba L; Pérez-Lorenzo M; Salgueiriño V; Correa-Duarte MA; Comesaña-Hermo M
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31323986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis.
    Wy Y; Jung H; Hong JW; Han SW
    Acc Chem Res; 2022 Mar; 55(6):831-843. PubMed ID: 35213153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in the Design of Plasmonic Au/TiO
    Abed J; Rajput NS; Moutaouakil AE; Jouiad M
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33203122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic Active "Hot Spots"-Confined Photocatalytic CO
    Jiang X; Huang J; Bi Z; Ni W; Gurzadyan G; Zhu Y; Zhang Z
    Adv Mater; 2022 Apr; 34(14):e2109330. PubMed ID: 35112406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitive surface-enhanced Raman scattering of TiO
    Zhao X; Zhang W; Peng C; Liang Y; Wang W
    J Colloid Interface Sci; 2017 Dec; 507():370-377. PubMed ID: 28806656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic-enhanced photocatalysis reactions using gold nanostructured films.
    Ibrahem MA; Rasheed BG; Mahdi RI; Khazal TM; Omar MM; O'Neill M
    RSC Adv; 2020 Jun; 10(38):22324-22330. PubMed ID: 35514594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Hot Electrons and Hot Holes for Simultaneous Cocatalyst Deposition on Plasmonic Nanostructures.
    Kontoleta E; Tsoukala A; Askes SHC; Zoethout E; Oksenberg E; Agrawal H; Garnett EC
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):35986-35994. PubMed ID: 32672034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitization of Pt/TiO
    Wang F; Wong RJ; Ho JH; Jiang Y; Amal R
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30575-30582. PubMed ID: 28829570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of Multiple Plasmonic and Co-Catalyst Nanostructures on TiO2 Nanosheets for Visible-Near-Infrared Photocatalytic Hydrogen Evolution.
    Jiang W; Bai S; Wang L; Wang X; Yang L; Li Y; Liu D; Wang X; Li Z; Jiang J; Xiong Y
    Small; 2016 Mar; 12(12):1640-8. PubMed ID: 26833931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IR-Driven Ultrafast Transfer of Plasmonic Hot Electrons in Nonmetallic Branched Heterostructures for Enhanced H
    Zhang Z; Jiang X; Liu B; Guo L; Lu N; Wang L; Huang J; Liu K; Dong B
    Adv Mater; 2018 Mar; 30(9):. PubMed ID: 29327486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Optimized Catalysts: Hot-Electron Driven Photosynthesis of Catalytic Photocathodes.
    Kontoleta E; Askes SHC; Garnett EC
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):35713-35719. PubMed ID: 31475816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ALD-Developed Plasmonic Two-Dimensional Au-WO
    Karbalaei Akbari M; Hai Z; Wei Z; Detavernier C; Solano E; Verpoort F; Zhuiykov S
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10304-10314. PubMed ID: 29509409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Au@TiO2-CdS ternary nanostructures for efficient visible-light-driven hydrogen generation.
    Fang J; Xu L; Zhang Z; Yuan Y; Cao S; Wang Z; Yin L; Liao Y; Xue C
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8088-92. PubMed ID: 23865712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Hybrid Nanostructures in Photocatalysis: Structures, Mechanisms, and Applications.
    Ninakanti R; Dingenen F; Borah R; Peeters H; Verbruggen SW
    Top Curr Chem (Cham); 2022 Aug; 380(5):40. PubMed ID: 35951165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral Generation of Hot Carriers for Polarization-Sensitive Plasmonic Photocatalysis.
    Negrín-Montecelo Y; Movsesyan A; Gao J; Burger S; Wang ZM; Nlate S; Pouget E; Oda R; Comesaña-Hermo M; Govorov AO; Correa-Duarte MA
    J Am Chem Soc; 2022 Feb; 144(4):1663-1671. PubMed ID: 35073069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of charge carriers and generation of reactive oxygen species by TiO
    Zhang H; Meng D; Fu B; Fan H; Cai R; Fu PP; Wu X
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2019; 37(2):81-98. PubMed ID: 31131702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doping of Nb
    Shiraishi Y; Imai J; Yasumoto N; Sakamoto H; Tanaka S; Ichikawa S; Hirai T
    Langmuir; 2019 Apr; 35(16):5455-5462. PubMed ID: 30916561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-Enhanced Photoelectrochemical Current and Hydrogen Production of (MoS
    Li YY; Wang JH; Luo ZJ; Chen K; Cheng ZQ; Ma L; Ding SJ; Zhou L; Wang QQ
    Sci Rep; 2017 Aug; 7(1):7178. PubMed ID: 28775346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum tunneling injection of hot electrons in Au/TiO
    Shiraishi Y; Yasumoto N; Imai J; Sakamoto H; Tanaka S; Ichikawa S; Ohtani B; Hirai T
    Nanoscale; 2017 Jun; 9(24):8349-8361. PubMed ID: 28594044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progressive Design of Plasmonic Metal-Semiconductor Ensemble toward Regulated Charge Flow and Improved Vis-NIR-Driven Solar-to-Chemical Conversion.
    Han C; Quan Q; Chen HM; Sun Y; Xu YJ
    Small; 2017 Apr; 13(14):. PubMed ID: 28151576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.