BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31324018)

  • 41. The Hoechst 33258 covalent dimer covers a total turn of the double-stranded DNA.
    Streltsov SA; Gromyko AV; Oleinikov VA; Zhuze AL
    J Biomol Struct Dyn; 2006 Dec; 24(3):285-302. PubMed ID: 17054387
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reversible photocontrol of DNA binding by a designed GCN4-bZIP protein.
    Woolley GA; Jaikaran AS; Berezovski M; Calarco JP; Krylov SN; Smart OS; Kumita JR
    Biochemistry; 2006 May; 45(19):6075-84. PubMed ID: 16681380
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A comparison of the different DNA binding specificities of the bZip proteins C/EBP and GCN4.
    Koldin B; Suckow M; Seydel A; von Wilcken-Bergmann B; Müller-Hill B
    Nucleic Acids Res; 1995 Oct; 23(20):4162-9. PubMed ID: 7479080
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Light-triggered capture and release of DNA and proteins by host-guest binding and electrostatic interaction.
    Moratz J; Samanta A; Voskuhl J; Mohan Nalluri SK; Ravoo BJ
    Chemistry; 2015 Feb; 21(8):3271-7. PubMed ID: 25585879
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vitro selection by using mutated GCN4-bZIP peptides for analysis of peptide-DNA interactions.
    Furusawa H; Morii T; Okahata Y
    Nucleic Acids Symp Ser; 2000; (44):245-6. PubMed ID: 12903360
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cys-Gly specific dipeptidase Dug1p from S. cerevisiae binds promiscuously to di-, tri-, and tetra-peptides: Peptide-protein interaction, homology modeling, and activity studies reveal a latent promiscuity in substrate recognition.
    Kaur H; Datt M; Ekka MK; Mittal M; Singh AK; Kumaran S
    Biochimie; 2011 Feb; 93(2):175-86. PubMed ID: 20868722
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tryptophan intercalation in G, C containing polynucleotides: Z to B conversion of poly [d(G-5M C)] in low salt induced by a tetra peptide.
    Rajeswari MR
    J Biomol Struct Dyn; 1996 Aug; 14(1):25-30. PubMed ID: 8877559
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The GCN4 bZIP targets noncognate gene regulatory sequences: quantitative investigation of binding at full and half sites.
    Chan IS; Fedorova AV; Shin JA
    Biochemistry; 2007 Feb; 46(6):1663-71. PubMed ID: 17279629
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A general strategy to determine a target DNA sequence of a short peptide: application to a d-peptide.
    Morii T; Tanaka T; Sato S; Hagihara M; Aizawa Y; Makino K
    J Am Chem Soc; 2002 Jan; 124(2):180-1. PubMed ID: 11782163
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evidence that a minor groove-binding peptide and a major groove-binding protein can simultaneously occupy a common site on DNA.
    Oakley MG; Mrksich M; Dervan PB
    Biochemistry; 1992 Nov; 31(45):10969-75. PubMed ID: 1445835
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adaptability at the protein-DNA interface is an important aspect of sequence recognition by bZIP proteins.
    Kim J; Tzamarias D; Ellenberger T; Harrison SC; Struhl K
    Proc Natl Acad Sci U S A; 1993 May; 90(10):4513-7. PubMed ID: 8506292
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermodynamic characterization of the folding coupled DNA binding by the monomeric transcription activator GCN4 peptide.
    Wang X; Cao W; Cao A; Lai L
    Biophys J; 2003 Mar; 84(3):1867-75. PubMed ID: 12609888
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sequence-selective DNA recognition and enhanced cellular up-take by peptide-steroid conjugates.
    Ruiz García Y; Iyer A; Van Lysebetten D; Pabon YV; Louage B; Honcharenko M; De Geest BG; Smith CI; Strömberg R; Madder A
    Chem Commun (Camb); 2015 Dec; 51(99):17552-5. PubMed ID: 26477302
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Determinants of half-site spacing preferences that distinguish AP-1 and ATF/CREB bZIP domains.
    Kim J; Struhl K
    Nucleic Acids Res; 1995 Jul; 23(13):2531-7. PubMed ID: 7630732
    [TBL] [Abstract][Full Text] [Related]  

  • 55. DNA binding specificity of the basic-helix-loop-helix protein MASH-1.
    Meierhan D; el-Ariss C; Neuenschwander M; Sieber M; Stackhouse JF; Allemann RK
    Biochemistry; 1995 Sep; 34(35):11026-36. PubMed ID: 7669760
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct inhibition of the DNA-binding activity of POU transcription factors Pit-1 and Brn-3 by selective binding of a phenyl-furan-benzimidazole dication.
    Peixoto P; Liu Y; Depauw S; Hildebrand MP; Boykin DW; Bailly C; Wilson WD; David-Cordonnier MH
    Nucleic Acids Res; 2008 Jun; 36(10):3341-53. PubMed ID: 18440973
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design of sequence-specific DNA binding ligands that use a two-stranded peptide motif for DNA sequence recognition.
    Nikolaev VA; Grokhovsky SL; Surovaya AN; Leinsoo TA; Sidorova NYu ; Zasedatelev AS; Zhuze AL; Strahan GA; Shafer RH; Gursky GV
    J Biomol Struct Dyn; 1996 Aug; 14(1):31-47. PubMed ID: 8877560
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Construction of alpha-helix peptides with beta-cyclodextrin and dansyl units and their conformational and molecular sensing properties.
    Matsumura S; Sakamoto S; Ueno A; Mihara H
    Chemistry; 2000 May; 6(10):1781-8. PubMed ID: 10845636
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A thermodynamic study on the formation and stability of DNA duplex at transcription site for DNA binding proteins GCN4.
    Cao W; Lai L
    Biophys Chem; 1999 Aug; 80(3):217-26. PubMed ID: 10483711
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photoswitchable, DNA-binding helical peptides assembled with two independently designed sequences for photoregulation and DNA recognition.
    Fujimoto K; Kajino M; Sakaguchi I; Inouye M
    Chemistry; 2012 Aug; 18(32):9834-40. PubMed ID: 22767420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.