BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 31324579)

  • 1. Fully Automated Postlumpectomy Breast Margin Assessment Utilizing Convolutional Neural Network Based Optical Coherence Tomography Image Classification Method.
    Mojahed D; Ha RS; Chang P; Gan Y; Yao X; Angelini B; Hibshoosh H; Taback B; Hendon CP
    Acad Radiol; 2020 May; 27(5):e81-e86. PubMed ID: 31324579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT.
    Yao X; Gan Y; Chang E; Hibshoosh H; Feldman S; Hendon C
    Lasers Surg Med; 2017 Mar; 49(3):258-269. PubMed ID: 28264146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated assessment of breast cancer margin in optical coherence tomography images via pretrained convolutional neural network.
    Singla N; Dubey K; Srivastava V
    J Biophotonics; 2019 Mar; 12(3):e201800255. PubMed ID: 30318761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretation of Optical Coherence Tomography Images for Breast Tissue Assessment.
    Yemul KS; Zysk AM; Richardson AL; Tangella KV; Jacobs LK
    Surg Innov; 2019 Feb; 26(1):50-56. PubMed ID: 30295149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multimodal Optical Coherence Tomography for Intraoperative Evaluation of Tumor Margins and Surgical Margins in Breast-Conserving Surgery.
    Vorontsov DA; Gubarkova EV; Sirotkina MA; Sovetsky AA; Plekhanov AA; Kuznetsov SS; Davydova DA; Bogomolova AY; Zaitsev VY; Gamayunov SV; Vorontsov AY; Sobolevskiy VA; Gladkova ND
    Sovrem Tekhnologii Med; 2022; 14(2):26-38. PubMed ID: 37065422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperspectral dark-field microscopy of human breast lumpectomy samples for tumor margin detection in breast-conserving surgery.
    Hwang J; Cheney P; Kanick SC; Le HND; McClatchy DM; Zhang H; Liu N; John Lu ZQ; Cho TJ; Briggman K; Allen DW; Wells WA; Pogue BW
    J Biomed Opt; 2024 Sep; 29(9):093503. PubMed ID: 38715717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated local binary pattern texture features for classification of breast tissue imaged by optical coherence microscopy.
    Wan S; Lee HC; Huang X; Xu T; Xu T; Zeng X; Zhang Z; Sheikine Y; Connolly JL; Fujimoto JG; Zhou C
    Med Image Anal; 2017 May; 38():104-116. PubMed ID: 28327449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classifying breast cancer in ultrahigh-resolution optical coherence tomography images using convolutional neural networks.
    Bareja R; Mojahed D; Hibshoosh H; Hendon C
    Appl Opt; 2022 May; 61(15):4458-4462. PubMed ID: 36256284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of surgically excised breast tissue microstructure using wide-field optical coherence tomography.
    Schmidt H; Connolly C; Jaffer S; Oza T; Weltz CR; Port ER; Corben A
    Breast J; 2020 May; 26(5):917-923. PubMed ID: 31612563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical Coherence Tomography: A Novel Imaging Method for Post-lumpectomy Breast Margin Assessment-A Multi-reader Study.
    Ha R; Friedlander LC; Hibshoosh H; Hendon C; Feldman S; Ahn S; Schmidt H; Akens MK; Fitzmaurice M; Wilson BC; Mango VL
    Acad Radiol; 2018 Mar; 25(3):279-287. PubMed ID: 29174226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnostic Accuracy of Quantitative Micro-Elastography for Margin Assessment in Breast-Conserving Surgery.
    Kennedy KM; Zilkens R; Allen WM; Foo KY; Fang Q; Chin L; Sanderson RW; Anstie J; Wijesinghe P; Curatolo A; Tan HEI; Morin N; Kunjuraman B; Yeomans C; Chin SL; DeJong H; Giles K; Dessauvagie BF; Latham B; Saunders CM; Kennedy BF
    Cancer Res; 2020 Apr; 80(8):1773-1783. PubMed ID: 32295783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraoperative margin assessment of human breast tissue in optical coherence tomography images using deep neural networks.
    Rannen Triki A; Blaschko MB; Jung YM; Song S; Han HJ; Kim SI; Joo C
    Comput Med Imaging Graph; 2018 Nov; 69():21-32. PubMed ID: 30172090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully Automated Convolutional Neural Network Method for Quantification of Breast MRI Fibroglandular Tissue and Background Parenchymal Enhancement.
    Ha R; Chang P; Mema E; Mutasa S; Karcich J; Wynn RT; Liu MZ; Jambawalikar S
    J Digit Imaging; 2019 Feb; 32(1):141-147. PubMed ID: 30076489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraoperative optical coherence tomography for soft tissue sarcoma differentiation and margin identification.
    Mesa KJ; Selmic LE; Pande P; Monroy GL; Reagan J; Samuelson J; Driskell E; Li J; Marjanovic M; Chaney EJ; Boppart SA
    Lasers Surg Med; 2017 Mar; 49(3):240-248. PubMed ID: 28319274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractal analysis for classification of breast carcinoma in optical coherence tomography.
    Sullivan AC; Hunt JP; Oldenburg AL
    J Biomed Opt; 2011 Jun; 16(6):066010. PubMed ID: 21721811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated classification of normal and Stargardt disease optical coherence tomography images using deep learning.
    Shah M; Roomans Ledo A; Rittscher J
    Acta Ophthalmol; 2020 Sep; 98(6):e715-e721. PubMed ID: 31981283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperspectral Imaging for Resection Margin Assessment during Cancer Surgery.
    Kho E; de Boer LL; Van de Vijver KK; van Duijnhoven F; Vrancken Peeters MTFD; Sterenborg HJCM; Ruers TJM
    Clin Cancer Res; 2019 Jun; 25(12):3572-3580. PubMed ID: 30885938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time Imaging of the Resection Bed Using a Handheld Probe to Reduce Incidence of Microscopic Positive Margins in Cancer Surgery.
    Erickson-Bhatt SJ; Nolan RM; Shemonski ND; Adie SG; Putney J; Darga D; McCormick DT; Cittadine AJ; Zysk AM; Marjanovic M; Chaney EJ; Monroy GL; South FA; Cradock KA; Liu ZG; Sundaram M; Ray PS; Boppart SA
    Cancer Res; 2015 Sep; 75(18):3706-12. PubMed ID: 26374464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diagnosis of Pituitary Adenoma Biopsies by Ultrahigh Resolution Optical Coherence Tomography Using Neuronal Networks.
    Micko A; Placzek F; Fonollà R; Winklehner M; Sentosa R; Krause A; Vila G; Höftberger R; Andreana M; Drexler W; Leitgeb RA; Unterhuber A; Wolfsberger S
    Front Endocrinol (Lausanne); 2021; 12():730100. PubMed ID: 34733239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Application of convolutional neural network to risk evaluation of positive circumferential resection margin of rectal cancer by magnetic resonance imaging].
    Xu JH; Zhou XM; Ma JL; Liu SS; Zhang MS; Zheng XF; Zhang XY; Liu GW; Zhang XX; Lu Y; Wang DS
    Zhonghua Wei Chang Wai Ke Za Zhi; 2020 Jun; 23(6):572-577. PubMed ID: 32521977
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 18.