BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 31324627)

  • 21. Genetic diversity of Microcystis cyanophages in two different freshwater environments.
    Nakamura G; Kimura S; Sako Y; Yoshida T
    Arch Microbiol; 2014 Jun; 196(6):401-9. PubMed ID: 24671440
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nutrient Loading and Viral Memory Drive Accumulation of Restriction Modification Systems in Bloom-Forming Cyanobacteria.
    Papoulis SE; Wilhelm SW; Talmy D; Zinser ER
    mBio; 2021 Jun; 12(3):e0087321. PubMed ID: 34060332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genomic Characteristics of the Toxic Bloom-Forming Cyanobacterium
    Yamaguchi H; Suzuki S; Osana Y; Kawachi M
    J Genomics; 2020; 8():1-6. PubMed ID: 31892993
    [No Abstract]   [Full Text] [Related]  

  • 24. Cyanophages Infection of Microcystis Bloom in Lowland Dam Reservoir of Sulejów, Poland.
    Mankiewicz-Boczek J; Jaskulska A; Pawełczyk J; Gągała I; Serwecińska L; Dziadek J
    Microb Ecol; 2016 Feb; 71(2):315-25. PubMed ID: 26403721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The "Neglected Viruses" of
    Pound HL; Gann ER; Tang X; Krausfeldt LE; Huff M; Staton ME; Talmy D; Wilhelm SW
    Front Microbiol; 2020; 11():338. PubMed ID: 32210938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Real-time PCR detection of host-mediated cyanophage gene transcripts during infection of a natural Microcystis aeruginosa population.
    Yoshida M; Yoshida T; Yoshida-Takashima Y; Kashima A; Hiroishi S
    Microbes Environ; 2010; 25(3):211-5. PubMed ID: 21576874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genotype and host microbiome alter competitive interactions between Microcystis aeruginosa and Chlorella sorokiniana.
    Schmidt KC; Jackrel SL; Smith DJ; Dick GJ; Denef VJ
    Harmful Algae; 2020 Nov; 99():101939. PubMed ID: 33218432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative genomics reveals diversified CRISPR-Cas systems of globally distributed Microcystis aeruginosa, a freshwater bloom-forming cyanobacterium.
    Yang C; Lin F; Li Q; Li T; Zhao J
    Front Microbiol; 2015; 6():394. PubMed ID: 26029174
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genomic Characterization of Cyanophage vB_AphaS-CL131 Infecting Filamentous Diazotrophic Cyanobacterium
    Šulčius S; Šimoliūnas E; Alzbutas G; Gasiūnas G; Jauniškis V; Kuznecova J; Miettinen S; Nilsson E; Meškys R; Roine E; Paškauskas R; Holmfeldt K
    Appl Environ Microbiol; 2019 Jan; 85(1):. PubMed ID: 30367000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cultivation and characterization of the MaMV-DC cyanophage that infects bloom-forming cyanobacterium Microcystis aeruginosa.
    Ou T; Li S; Liao X; Zhang Q
    Virol Sin; 2013 Oct; 28(5):266-71. PubMed ID: 23990146
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Novel Freshwater Cyanophage Mae-Yong1326-1 Infecting Bloom-Forming Cyanobacterium
    Wang F; Li D; Cai R; Pan L; Zhou Q; Liu W; Qian M; Tong Y
    Viruses; 2022 Sep; 14(9):. PubMed ID: 36146857
    [No Abstract]   [Full Text] [Related]  

  • 32. Distribution of the Harmful Bloom-Forming Cyanobacterium, Microcystis aeruginosa, in 88 Freshwater Environments across Japan.
    Kataoka T; Ohbayashi K; Kobayashi Y; Takasu H; Nakano SI; Kondo R; Hodoki Y
    Microbes Environ; 2020; 35(1):. PubMed ID: 32074549
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Novel Freshwater Cyanophage, Mae-Yong924-1, Reveals a New Family.
    Qian M; Li D; Lin W; Pan L; Liu W; Zhou Q; Cai R; Wang F; Zhu J; Tong Y
    Viruses; 2022 Jan; 14(2):. PubMed ID: 35215876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diversification of CRISPR within coexisting genotypes in a natural population of the bloom-forming cyanobacterium Microcystis aeruginosa.
    Kuno S; Sako Y; Yoshida T
    Microbiology (Reading); 2014 May; 160(Pt 5):903-16. PubMed ID: 24586036
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatiotemporal changes in the genetic diversity in French bloom-forming populations of the toxic cyanobacterium, Microcystis aeruginosa.
    Sabart M; Pobel D; Latour D; Robin J; Salençon MJ; Humbert JF
    Environ Microbiol Rep; 2009 Aug; 1(4):263-72. PubMed ID: 23765856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tracing the active genetic diversity of Microcystis and Microcystis phage through a temporal survey of Taihu.
    Pound HL; Wilhelm SW
    PLoS One; 2020; 15(12):e0244482. PubMed ID: 33370358
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel salt-tolerant genotype illuminates the sucrose gene evolution in freshwater bloom-forming cyanobacterium Microcystis aeruginosa.
    Tanabe Y; Yamaguchi H; Sano T; Kawachi M
    FEMS Microbiol Lett; 2019 Aug; 366(15):. PubMed ID: 31504438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of Cyanophages in Lake Erie: Interaction Mechanisms and Structural Damage of Toxic Cyanobacteria.
    Jiang X; Ha C; Lee S; Kwon J; Cho H; Gorham T; Lee J
    Toxins (Basel); 2019 Jul; 11(8):. PubMed ID: 31357465
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Incomplete Selective Sweeps of
    Kimura S; Uehara M; Morimoto D; Yamanaka M; Sako Y; Yoshida T
    Front Microbiol; 2018; 9():425. PubMed ID: 29568293
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Local expansion of a panmictic lineage of water bloom-forming cyanobacterium Microcystis aeruginosa.
    Tanabe Y; Watanabe MM
    PLoS One; 2011 Feb; 6(2):e17085. PubMed ID: 21390221
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.