These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31324662)

  • 1. Elastic tissue forces mask muscle fiber forces underlying muscle spindle Ia afferent firing rates in stretch of relaxed rat muscle.
    Blum KP; Nardelli P; Cope TC; Ting LH
    J Exp Biol; 2019 Aug; 222(Pt 15):. PubMed ID: 31324662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Movement reduces the dynamic response of muscle spindle afferents and motoneuron synaptic potentials in rat.
    Haftel VK; Bichler EK; Nichols TR; Pinter MJ; Cope TC
    J Neurophysiol; 2004 May; 91(5):2164-71. PubMed ID: 14695354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recruitment of triceps surae motor units in the decerebrate cat. II. Heterogeneity among soleus motor units.
    Sokoloff AJ; Cope TC
    J Neurophysiol; 1996 May; 75(5):2005-16. PubMed ID: 8734599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force encoding in muscle spindles during stretch of passive muscle.
    Blum KP; Lamotte D'Incamps B; Zytnicki D; Ting LH
    PLoS Comput Biol; 2017 Sep; 13(9):e1005767. PubMed ID: 28945740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-series compliance of gastrocnemius muscle in cat step cycle: do spindles signal origin-to-insertion length?
    Elek J; Prochazka A; Hulliger M; Vincent S
    J Physiol; 1990 Oct; 429():237-58. PubMed ID: 2148952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attenuation of muscle spindle firing with artificially increased series compliance during stretch of relaxed muscle.
    Abbott EM; Stephens JD; Simha SN; Wood L; Nardelli P; Cope TC; Sawicki GS; Ting LH
    Exp Physiol; 2024 Jan; 109(1):148-158. PubMed ID: 37856330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging affects passive stiffness and spindle function of the rat soleus muscle.
    Rosant C; Nagel MD; Pérot C
    Exp Gerontol; 2007 Apr; 42(4):301-8. PubMed ID: 17118602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Egr3-dependent muscle spindle stretch receptor intrafusal muscle fiber differentiation and fusimotor innervation homeostasis.
    Oliveira Fernandes M; Tourtellotte WG
    J Neurosci; 2015 Apr; 35(14):5566-78. PubMed ID: 25855173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between short-range stiffness and yielding in type-identified, chemically skinned muscle fibers from the cat triceps surae muscles.
    Malamud JG; Godt RE; Nichols TR
    J Neurophysiol; 1996 Oct; 76(4):2280-9. PubMed ID: 8899603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cross-bridge mechanism can explain the thixotropic short-range elastic component of relaxed frog skeletal muscle.
    Campbell KS; Lakie M
    J Physiol; 1998 Aug; 510 ( Pt 3)(Pt 3):941-62. PubMed ID: 9660904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The response of muscle spindle primary afferents to simultaneously presented sinusoidal and ramp-and-hold stretches.
    Schäfer SS; Schuppan O; Dadfar F
    Brain Res; 1999 Feb; 819(1-2):89-107. PubMed ID: 10082865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetylcholine receptors in the equatorial region of intrafusal muscle fibres modulate mouse muscle spindle sensitivity.
    Gerwin L; Haupt C; Wilkinson KA; Kröger S
    J Physiol; 2019 Apr; 597(7):1993-2006. PubMed ID: 30673133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrafusal cross-bridge dynamics shape history-dependent muscle spindle responses to stretch.
    Simha SN; Ting LH
    Exp Physiol; 2024 Jan; 109(1):112-124. PubMed ID: 37428622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A muscle spindle model for primary afferent firing based on a simulation of intrafusal mechanical events.
    Schaafsma A; Otten E; Van Willigen JD
    J Neurophysiol; 1991 Jun; 65(6):1297-312. PubMed ID: 1831496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of dynamic fusimotor effects in the discharge frequency of Ia afferents by prestretching the muscle spindle.
    Schäfer SS
    Exp Brain Res; 1996 Mar; 108(2):297-304. PubMed ID: 8815037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of spindle afferents in rat soleus muscle using ramp-and-hold and sinusoidal stretches.
    De-Doncker L; Picquet F; Petit J; Falempin M
    J Neurophysiol; 2003 Jan; 89(1):442-9. PubMed ID: 12522192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence from the use of vibration during procaine nerve block that the spindle group II fibres contribute excitation to the tonic stretch reflex of the decerebrate cat.
    McGrath GJ; Matthews PB
    J Physiol; 1973 Dec; 235(2):371-408. PubMed ID: 4271734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specificities of afferents reinnervating cat muscle spindles after nerve section.
    Banks RW; Barker D
    J Physiol; 1989 Jan; 408():345-72. PubMed ID: 2528632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary and secondary afferent discharges from the same spindle during chain fibre contraction in cat tenuissimus muscle.
    Celichowski J; Emonet-Dénand F; Gladden M; Laporte Y; Petit J
    Exp Physiol; 1994 Sep; 79(5):691-704. PubMed ID: 7818860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle spindle thixotropy affects force perception through afferent-induced facilitation of the motor pathways as revealed by the Kohnstamm effect.
    Monjo F; Forestier N
    Exp Brain Res; 2018 Apr; 236(4):1193-1204. PubMed ID: 29468386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.