These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 31324711)
1. Denoising of Scintillation Camera Images Using a Deep Convolutional Neural Network: A Monte Carlo Simulation Approach. Minarik D; Enqvist O; Trägårdh E J Nucl Med; 2020 Feb; 61(2):298-303. PubMed ID: 31324711 [TBL] [Abstract][Full Text] [Related]
2. Dose reduction and image enhancement in micro-CT using deep learning. Muller FM; Maebe J; Vanhove C; Vandenberghe S Med Phys; 2023 Sep; 50(9):5643-5656. PubMed ID: 36994779 [TBL] [Abstract][Full Text] [Related]
3. A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images. Kim B; Han M; Shim H; Baek J Med Phys; 2019 Sep; 46(9):3906-3923. PubMed ID: 31306488 [TBL] [Abstract][Full Text] [Related]
4. Technical note: Phantom-based training framework for convolutional neural network CT noise reduction. Huber NR; Missert AD; Gong H; Leng S; Yu L; McCollough CH Med Phys; 2023 Feb; 50(2):821-830. PubMed ID: 36385704 [TBL] [Abstract][Full Text] [Related]
5. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness. Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845 [TBL] [Abstract][Full Text] [Related]
7. Deep learning on image denoising: An overview. Tian C; Fei L; Zheng W; Xu Y; Zuo W; Lin CW Neural Netw; 2020 Nov; 131():251-275. PubMed ID: 32829002 [TBL] [Abstract][Full Text] [Related]
8. Verification of image quality improvement of low-count bone scintigraphy using deep learning. Murata T; Hashimoto T; Onoguchi M; Shibutani T; Iimori T; Sawada K; Umezawa T; Masuda Y; Uno T Radiol Phys Technol; 2024 Mar; 17(1):269-279. PubMed ID: 38336939 [TBL] [Abstract][Full Text] [Related]
9. Bone metastasis classification using whole body images from prostate cancer patients based on convolutional neural networks application. Papandrianos N; Papageorgiou E; Anagnostis A; Papageorgiou K PLoS One; 2020; 15(8):e0237213. PubMed ID: 32797099 [TBL] [Abstract][Full Text] [Related]
10. Feasibility of a generalized convolutional neural network for automated identification of vertebral compression fractures: The Manitoba Bone Mineral Density Registry. Monchka BA; Kimelman D; Lix LM; Leslie WD Bone; 2021 Sep; 150():116017. PubMed ID: 34020078 [TBL] [Abstract][Full Text] [Related]
11. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging. Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353 [TBL] [Abstract][Full Text] [Related]
12. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks. Burton W; Myers C; Rullkoetter P Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580 [TBL] [Abstract][Full Text] [Related]
13. Synthesizing images from multiple kernels using a deep convolutional neural network. Missert AD; Yu L; Leng S; Fletcher JG; McCollough CH Med Phys; 2020 Feb; 47(2):422-430. PubMed ID: 31714999 [TBL] [Abstract][Full Text] [Related]
14. Denoising Medical Images Using Machine Learning, Deep Learning Approaches: A Survey. Arshaghi A; Ashourian M; Ghabeli L Curr Med Imaging; 2021; 17(5):578-594. PubMed ID: 33213331 [TBL] [Abstract][Full Text] [Related]
15. Mitigating inherent noise in Monte Carlo dose distributions using dilated U-Net. Javaid U; Souris K; Dasnoy D; Huang S; Lee JA Med Phys; 2019 Dec; 46(12):5790-5798. PubMed ID: 31600829 [TBL] [Abstract][Full Text] [Related]
16. Low-dose CT denoising via convolutional neural network with an observer loss function. Han M; Shim H; Baek J Med Phys; 2021 Oct; 48(10):5727-5742. PubMed ID: 34387360 [TBL] [Abstract][Full Text] [Related]
17. Deep-learning convolutional neural network-based scatter correction for contrast enhanced digital breast tomosynthesis in both cranio-caudal and mediolateral-oblique views. Duan X; Sahu P; Huang H; Zhao W J Med Imaging (Bellingham); 2023 Feb; 10(Suppl 2):S22404. PubMed ID: 36937988 [TBL] [Abstract][Full Text] [Related]
18. High-field mr diffusion-weighted image denoising using a joint denoising convolutional neural network. Wang H; Zheng R; Dai F; Wang Q; Wang C J Magn Reson Imaging; 2019 Dec; 50(6):1937-1947. PubMed ID: 31012226 [TBL] [Abstract][Full Text] [Related]
19. Pre-whitened matched filter and convolutional neural network based model observer performance for mass lesion detection in non-contrast breast CT. Lyu SH; Abbey CK; Hernandez AM; Boone JM Med Phys; 2023 Dec; 50(12):7558-7567. PubMed ID: 37646463 [TBL] [Abstract][Full Text] [Related]
20. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images. Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]