These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31324786)

  • 21. A high-throughput behavioral screening platform for measuring chemotaxis by C. elegans.
    Fryer E; Guha S; Rogel-Hernandez LE; Logan-Garbisch T; Farah H; Rezaei E; Mollhoff IN; Nekimken AL; Xu A; Seyahi LS; Fechner S; Druckmann S; Clandinin TR; Rhee SY; Goodman MB
    PLoS Biol; 2024 Jun; 22(6):e3002672. PubMed ID: 38935621
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemotaxis of Caenorhabditis elegans during simultaneous presentation of two water-soluble attractants, l-lysine and chloride ions.
    Shingai R; Wakabayashi T; Sakata K; Matsuura T
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Nov; 142(3):308-17. PubMed ID: 16165380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A single sensory neuron directs both attractive and repulsive odor preferences.
    Mori I
    Neuron; 2008 Sep; 59(6):839-40. PubMed ID: 18817723
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Behavioral choice between conflicting alternatives is regulated by a receptor guanylyl cyclase, GCY-28, and a receptor tyrosine kinase, SCD-2, in AIA interneurons of Caenorhabditis elegans.
    Shinkai Y; Yamamoto Y; Fujiwara M; Tabata T; Murayama T; Hirotsu T; Ikeda DD; Tsunozaki M; Iino Y; Bargmann CI; Katsura I; Ishihara T
    J Neurosci; 2011 Feb; 31(8):3007-15. PubMed ID: 21414922
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity.
    Fenk LA; de Bono M
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3525-34. PubMed ID: 26100886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural circuits mediate electrosensory behavior in Caenorhabditis elegans.
    Gabel CV; Gabel H; Pavlichin D; Kao A; Clark DA; Samuel AD
    J Neurosci; 2007 Jul; 27(28):7586-96. PubMed ID: 17626220
    [TBL] [Abstract][Full Text] [Related]  

  • 27. C. elegans positive butanone learning, short-term, and long-term associative memory assays.
    Kauffman A; Parsons L; Stein G; Wills A; Kaletsky R; Murphy C
    J Vis Exp; 2011 Mar; (49):. PubMed ID: 21445035
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Concentration memory-dependent synaptic plasticity of a taste circuit regulates salt concentration chemotaxis in Caenorhabditis elegans.
    Kunitomo H; Sato H; Iwata R; Satoh Y; Ohno H; Yamada K; Iino Y
    Nat Commun; 2013; 4():2210. PubMed ID: 23887678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of temperature pre-exposure on the locomotion and chemotaxis of C. elegans.
    Parida L; Neogi S; Padmanabhan V
    PLoS One; 2014; 9(10):e111342. PubMed ID: 25360667
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Single-Neuron Chemosensory Switch Determines the Valence of a Sexually Dimorphic Sensory Behavior.
    Fagan KA; Luo J; Lagoy RC; Schroeder FC; Albrecht DR; Portman DS
    Curr Biol; 2018 Mar; 28(6):902-914.e5. PubMed ID: 29526590
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular and cellular modulators for multisensory integration in C. elegans.
    Harris G; Wu T; Linfield G; Choi MK; Liu H; Zhang Y
    PLoS Genet; 2019 Mar; 15(3):e1007706. PubMed ID: 30849079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lateralized gustatory behavior of C. elegans is controlled by specific receptor-type guanylyl cyclases.
    Ortiz CO; Faumont S; Takayama J; Ahmed HK; Goldsmith AD; Pocock R; McCormick KE; Kunimoto H; Iino Y; Lockery S; Hobert O
    Curr Biol; 2009 Jun; 19(12):996-1004. PubMed ID: 19523832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A model of chemotaxis and associative learning in C. elegans.
    Appleby PA
    Biol Cybern; 2012 Sep; 106(6-7):373-87. PubMed ID: 22824944
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The cyclic nucleotide gated channel subunit CNG-1 instructs behavioral outputs in Caenorhabditis elegans by coincidence detection of nutritional status and olfactory input.
    He C; Altshuler-Keylin S; Daniel D; L'Etoile ND; O'Halloran D
    Neurosci Lett; 2016 Oct; 632():71-8. PubMed ID: 27561605
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemosensation in C. elegans.
    Bargmann CI
    WormBook; 2006 Oct; ():1-29. PubMed ID: 18050433
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated Analysis of a Nematode Population-based Chemosensory Preference Assay.
    Chai CM; Cronin CJ; Sternberg PW
    J Vis Exp; 2017 Jul; (125):. PubMed ID: 28745641
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A behavioral switch: cGMP and PKC signaling in olfactory neurons reverses odor preference in C. elegans.
    Tsunozaki M; Chalasani SH; Bargmann CI
    Neuron; 2008 Sep; 59(6):959-71. PubMed ID: 18817734
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Olfactory behavior of swimming C. elegans analyzed by measuring motile responses to temporal variations of odorants.
    Luo L; Gabel CV; Ha HI; Zhang Y; Samuel AD
    J Neurophysiol; 2008 May; 99(5):2617-25. PubMed ID: 18367700
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans.
    Troemel ER; Kimmel BE; Bargmann CI
    Cell; 1997 Oct; 91(2):161-9. PubMed ID: 9346234
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Simple Light Stimulation of Caenorhabditis elegans.
    Lee KH; Aschner M
    Curr Protoc Toxicol; 2016 Feb; 67():11.21.1-11.21.5. PubMed ID: 26828328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.