BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 31324857)

  • 1. The anti-aflatoxigenic mechanism of cinnamaldehyde in Aspergillus flavus.
    Wang P; Ma L; Jin J; Zheng M; Pan L; Zhao Y; Sun X; Liu Y; Xing F
    Sci Rep; 2019 Jul; 9(1):10499. PubMed ID: 31324857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory Effect of Cinnamaldehyde, Citral, and Eugenol on Aflatoxin Biosynthetic Gene Expression and Aflatoxin B1 Biosynthesis in Aspergillus flavus.
    Liang D; Xing F; Selvaraj JN; Liu X; Wang L; Hua H; Zhou L; Zhao Y; Wang Y; Liu Y
    J Food Sci; 2015 Dec; 80(12):M2917-24. PubMed ID: 26556681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dimethylformamide Inhibits Fungal Growth and Aflatoxin B
    Pan L; Chang P; Jin J; Yang Q; Xing F
    Toxins (Basel); 2020 Oct; 12(11):. PubMed ID: 33138160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aflatoxin B
    Xing F; Wang L; Liu X; Selvaraj JN; Wang Y; Zhao Y; Liu Y
    Int J Food Microbiol; 2017 Sep; 256():1-10. PubMed ID: 28578264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cinnamaldehyde inhibits fungal growth and aflatoxin B1 biosynthesis by modulating the oxidative stress response of Aspergillus flavus.
    Sun Q; Shang B; Wang L; Lu Z; Liu Y
    Appl Microbiol Biotechnol; 2016 Feb; 100(3):1355-1364. PubMed ID: 26585445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Insights of Transcriptional Regulator AflR in Aspergillus flavus Physiology.
    Wang P; Xu J; Chang PK; Liu Z; Kong Q
    Microbiol Spectr; 2022 Feb; 10(1):e0079121. PubMed ID: 35080432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-Scale Comparative Analysis of Eugenol-Induced/Repressed Genes Expression in
    Lv C; Wang P; Ma L; Zheng M; Liu Y; Xing F
    Front Microbiol; 2018; 9():1116. PubMed ID: 29899734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ethanol Inhibits Aflatoxin B
    Ren Y; Jin J; Zheng M; Yang Q; Xing F
    Front Microbiol; 2019; 10():2946. PubMed ID: 32010073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Piperine inhibits aflatoxin B1 production in Aspergillus flavus by modulating fungal oxidative stress response.
    Caceres I; El Khoury R; Bailly S; Oswald IP; Puel O; Bailly JD
    Fungal Genet Biol; 2017 Oct; 107():77-85. PubMed ID: 28830793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of the Anti-Aflatoxinogenic Activity of Micromeria graeca and Elucidation of Its Molecular Mechanism in Aspergillus flavus.
    El Khoury R; Caceres I; Puel O; Bailly S; Atoui A; Oswald IP; El Khoury A; Bailly JD
    Toxins (Basel); 2017 Mar; 9(3):. PubMed ID: 28257049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep sequencing analysis of transcriptomes in Aspergillus flavus in response to resveratrol.
    Wang H; Lei Y; Yan L; Cheng K; Dai X; Wan L; Guo W; Cheng L; Liao B
    BMC Microbiol; 2015 Sep; 15():182. PubMed ID: 26420172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into the persistent effect of transient cinnamaldehyde vapor treatment on the growth and aflatoxin synthesis of Aspergillus flavus.
    Niu A; Wu H; Hu X; Tan S; Wu Y; Yin X; Chen Y; Sun X; Wang G; Qiu W
    Food Res Int; 2023 Jan; 163():112300. PubMed ID: 36596201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative mapping of aflatoxin pathway gene clusters in Aspergillus parasiticus and Aspergillus flavus.
    Yu J; Chang PK; Cary JW; Wright M; Bhatnagar D; Cleveland TE; Payne GA; Linz JE
    Appl Environ Microbiol; 1995 Jun; 61(6):2365-71. PubMed ID: 7793957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling Aspergillus flavus and Aspergillus parasiticus growth and aflatoxin production in poultry feed using carvacrol and trans-cinnamaldehyde.
    Yin HB; Chen CH; Kollanoor-Johny A; Darre MJ; Venkitanarayanan K
    Poult Sci; 2015 Sep; 94(9):2183-90. PubMed ID: 26217023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of aflatoxin B1 biosynthesis and down regulation of aflR and aflB genes in presence of benzimidazole derivatives without impairing the growth of Aspergillus flavus.
    Dhanamjayulu P; Boga RB; Mehta A
    Toxicon; 2019 Dec; 170():60-67. PubMed ID: 31541640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of Aflatoxin Biosynthesis in Aspergillus flavus by 2-Phenylethanol Is Associated with Stimulated Growth and Decreased Degradation of Branched-Chain Amino Acids.
    Chang PK; Hua SS; Sarreal SB; Li RW
    Toxins (Basel); 2015 Sep; 7(10):3887-902. PubMed ID: 26404375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genes differentially expressed by Aspergillus flavus strains after loss of aflatoxin production by serial transfers.
    Chang PK; Wilkinson JR; Horn BW; Yu J; Bhatnagar D; Cleveland TE
    Appl Microbiol Biotechnol; 2007 Dec; 77(4):917-25. PubMed ID: 17955191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of Genes by Aflatoxigenic and Nonaflatoxigenic Strains of Aspergillus flavus Isolated from Brazil Nuts.
    Baquião AC; Rodriges AG; Lopes EL; Tralamazza SM; Zorzete P; Correa B
    Foodborne Pathog Dis; 2016 Aug; 13(8):434-40. PubMed ID: 27224419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tight control of mycotoxin biosynthesis gene expression in Aspergillus flavus by temperature as revealed by RNA-Seq.
    Yu J; Fedorova ND; Montalbano BG; Bhatnagar D; Cleveland TE; Bennett JW; Nierman WC
    FEMS Microbiol Lett; 2011 Sep; 322(2):145-9. PubMed ID: 21707733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of msnA, a putative stress regulatory gene, in Aspergillus parasiticus and Aspergillus flavus increased production of conidia, aflatoxins and kojic acid.
    Chang PK; Scharfenstein LL; Luo M; Mahoney N; Molyneux RJ; Yu J; Brown RL; Campbell BC
    Toxins (Basel); 2011 Jan; 3(1):82-104. PubMed ID: 22069691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.