These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 31324959)
1. Can chemotaxis speed up or slow down the spatial spreading in parabolic-elliptic Keller-Segel systems with logistic source? Salako RB; Shen W; Xue S J Math Biol; 2019 Sep; 79(4):1455-1490. PubMed ID: 31324959 [TBL] [Abstract][Full Text] [Related]
2. Determining the optimal coefficient of the spatially periodic Fisher-KPP equation that minimizes the spreading speed. Ito R J Math Biol; 2020 May; 80(6):1953-1970. PubMed ID: 32211951 [TBL] [Abstract][Full Text] [Related]
3. Persistence and Spreading Speeds of Integro-Difference Equations with an Expanding or Contracting Habitat. Li B; Bewick S; Barnard MR; Fagan WF Bull Math Biol; 2016 Jul; 78(7):1337-79. PubMed ID: 27417986 [TBL] [Abstract][Full Text] [Related]
4. Forced Traveling Waves in a Reaction-Diffusion Equation with Strong Allee Effect and Shifting Habitat. Li B; Otto G Bull Math Biol; 2023 Nov; 85(12):121. PubMed ID: 37922015 [TBL] [Abstract][Full Text] [Related]
5. A Discrete Velocity Kinetic Model with Food Metric: Chemotaxis Traveling Waves. Choi SH; Kim YJ Bull Math Biol; 2017 Feb; 79(2):277-302. PubMed ID: 27995380 [TBL] [Abstract][Full Text] [Related]
6. Traveling wave solutions in a two-group SIR epidemic model with constant recruitment. Zhao L; Wang ZC; Ruan S J Math Biol; 2018 Dec; 77(6-7):1871-1915. PubMed ID: 29564532 [TBL] [Abstract][Full Text] [Related]
7. Nonlinear Diffusion for Bacterial Traveling Wave Phenomenon. Kim YJ; Mimura M; Yoon C Bull Math Biol; 2023 Mar; 85(5):35. PubMed ID: 36971898 [TBL] [Abstract][Full Text] [Related]
8. Traveling wave solutions from microscopic to macroscopic chemotaxis models. Lui R; Wang ZA J Math Biol; 2010 Nov; 61(5):739-61. PubMed ID: 20037760 [TBL] [Abstract][Full Text] [Related]
9. Invasions Slow Down or Collapse in the Presence of Reactive Boundaries. Minors K; Dawes JHP Bull Math Biol; 2017 Oct; 79(10):2197-2214. PubMed ID: 28766158 [TBL] [Abstract][Full Text] [Related]
10. A reaction-diffusion within-host HIV model with cell-to-cell transmission. Ren X; Tian Y; Liu L; Liu X J Math Biol; 2018 Jun; 76(7):1831-1872. PubMed ID: 29305736 [TBL] [Abstract][Full Text] [Related]
11. Traveling wave solutions of a singular Keller-Segel system with logistic source. Li T; Wang ZA Math Biosci Eng; 2022 Jun; 19(8):8107-8131. PubMed ID: 35801459 [TBL] [Abstract][Full Text] [Related]
12. Bacterial chemotaxis without gradient-sensing. Yoon C; Kim YJ J Math Biol; 2015 May; 70(6):1359-80. PubMed ID: 24865467 [TBL] [Abstract][Full Text] [Related]
13. Traveling bands for the Keller-Segel model with population growth. Ai S; Wang Z Math Biosci Eng; 2015 Aug; 12(4):717-37. PubMed ID: 25974334 [TBL] [Abstract][Full Text] [Related]
14. Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis. Biler P; Corrias L; Dolbeault J J Math Biol; 2011 Jul; 63(1):1-32. PubMed ID: 20730434 [TBL] [Abstract][Full Text] [Related]
15. A Continuum Mathematical Model of Substrate-Mediated Tissue Growth. El-Hachem M; McCue SW; Simpson MJ Bull Math Biol; 2022 Mar; 84(4):49. PubMed ID: 35237899 [TBL] [Abstract][Full Text] [Related]
16. Steadily propagating waves of a chemotaxis model. Li T; Wang ZA Math Biosci; 2012 Dec; 240(2):161-8. PubMed ID: 22841924 [TBL] [Abstract][Full Text] [Related]
17. Chemotactic collapse for the Keller-Segel model. Herrero MA; Velázquez JJ J Math Biol; 1996 Dec; 35(2):177-94. PubMed ID: 9053436 [TBL] [Abstract][Full Text] [Related]
18. On the existence of radially symmetric blow-up solutions for the Keller-Segel model. Horstmann D J Math Biol; 2002 May; 44(5):463-78. PubMed ID: 12021985 [TBL] [Abstract][Full Text] [Related]
19. Multiscale dynamics of biological cells with chemotactic interactions: from a discrete stochastic model to a continuous description. Alber M; Chen N; Glimm T; Lushnikov PM Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051901. PubMed ID: 16802961 [TBL] [Abstract][Full Text] [Related]
20. Invading and Receding Sharp-Fronted Travelling Waves. El-Hachem M; McCue SW; Simpson MJ Bull Math Biol; 2021 Feb; 83(4):35. PubMed ID: 33611673 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]