BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31324991)

  • 1. Groove structure of porous hydroxyapatite scaffolds (HAS) modulates immune environment via regulating macrophages and subsequently enhances osteogenesis.
    Li C; Yang L; Ren X; Lin M; Jiang X; Shen D; Xu T; Ren J; Huang L; Qing W; Zheng J; Mu Y
    J Biol Inorg Chem; 2019 Aug; 24(5):733-745. PubMed ID: 31324991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of biomimetic calcium deficient hydroxyapatite and sintered β-tricalcium phosphate on osteoimmune reaction and osteogenesis.
    Sadowska JM; Wei F; Guo J; Guillem-Marti J; Lin Z; Ginebra MP; Xiao Y
    Acta Biomater; 2019 Sep; 96():605-618. PubMed ID: 31269454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grooved hydroxyapatite scaffold modulates mitochondria homeostasis and thus promotes osteogenesis in bone mesenchymal stromal cells.
    Li C; Yang L; Ren X; Lin M; Shen D; Li Y; Zhang X; Liu C; Mu Y
    Mol Med Rep; 2020 Oct; 22(4):2801-2809. PubMed ID: 32700750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of cerium oxide into hydroxyapatite coating regulates osteogenic activity of mesenchymal stem cell and macrophage polarization.
    Li K; Shen Q; Xie Y; You M; Huang L; Zheng X
    J Biomater Appl; 2017 Feb; 31(7):1062-1076. PubMed ID: 27932702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteoimmunomodulatory properties of magnesium scaffolds coated with β-tricalcium phosphate.
    Chen Z; Mao X; Tan L; Friis T; Wu C; Crawford R; Xiao Y
    Biomaterials; 2014 Oct; 35(30):8553-65. PubMed ID: 25017094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone regeneration from human mesenchymal stem cells on porous hydroxyapatite-PLGA-collagen bioactive polymer scaffolds.
    Bhuiyan DB; Middleton JC; Tannenbaum R; Wick TM
    Biomed Mater Eng; 2017; 28(6):671-685. PubMed ID: 29171970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc Silicate/Nano-Hydroxyapatite/Collagen Scaffolds Promote Angiogenesis and Bone Regeneration via the p38 MAPK Pathway in Activated Monocytes.
    Song Y; Wu H; Gao Y; Li J; Lin K; Liu B; Lei X; Cheng P; Zhang S; Wang Y; Sun J; Bi L; Pei G
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16058-16075. PubMed ID: 32182418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone marrow stromal cells enhance the osteogenic properties of hydroxyapatite scaffolds by modulating the foreign body reaction.
    Tour G; Wendel M; Tcacencu I
    J Tissue Eng Regen Med; 2014 Nov; 8(11):841-9. PubMed ID: 22782939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Europium-doped mesoporous silica nanosphere as an immune-modulating osteogenesis/angiogenesis agent.
    Shi M; Xia L; Chen Z; Lv F; Zhu H; Wei F; Han S; Chang J; Xiao Y; Wu C
    Biomaterials; 2017 Nov; 144():176-187. PubMed ID: 28837959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop.
    Liu H; Xu GW; Wang YF; Zhao HS; Xiong S; Wu Y; Heng BC; An CR; Zhu GH; Xie DH
    Biomaterials; 2015 May; 49():103-12. PubMed ID: 25725559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel porous hydroxyapatite scaffold (pHAMG) enhances angiogenesis and osteogenesis around dental implants by regulating the immune microenvironment.
    Li P; Tian X; Zhou X; Xun Q; Zheng J; Mu Y; Liao J
    Clin Oral Investig; 2023 Nov; 27(11):6879-6889. PubMed ID: 37843634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of drug-loaded nano-hydroxyapatite/polyamide 66 scaffolds modified with carbon nanotubes and silk fibroin.
    Yao MZ; Huang-Fu MY; Liu HN; Wang XR; Sheng X; Gao JQ
    Int J Nanomedicine; 2016; 11():6181-6194. PubMed ID: 27920525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of nano-structural properties of biomimetic hydroxyapatite on osteoimmunomodulation.
    Sadowska JM; Wei F; Guo J; Guillem-Marti J; Ginebra MP; Xiao Y
    Biomaterials; 2018 Oct; 181():318-332. PubMed ID: 30098568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnesium Enhances Osteogenesis of BMSCs by Tuning Osteoimmunomodulation.
    Zhang X; Chen Q; Mao X
    Biomed Res Int; 2019; 2019():7908205. PubMed ID: 31828131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs.
    Liu H; Peng H; Wu Y; Zhang C; Cai Y; Xu G; Li Q; Chen X; Ji J; Zhang Y; OuYang HW
    Biomaterials; 2013 Jun; 34(18):4404-17. PubMed ID: 23515177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells.
    Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quercetin Inlaid Silk Fibroin/Hydroxyapatite Scaffold Promotes Enhanced Osteogenesis.
    Song JE; Tripathy N; Lee DH; Park JH; Khang G
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):32955-32964. PubMed ID: 30188112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitosan/β-1,3-glucan/hydroxyapatite bone scaffold enhances osteogenic differentiation through TNF-α-mediated mechanism.
    Przekora A; Ginalska G
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():225-233. PubMed ID: 28183603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustained delivery of BMP-2 enhanced osteoblastic differentiation of BMSCs based on surface hydroxyapatite nanostructure in chitosan-HAp scaffold.
    Wang G; Qiu J; Zheng L; Ren N; Li J; Liu H; Miao J
    J Biomater Sci Polym Ed; 2014; 25(16):1813-27. PubMed ID: 25166866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.