These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The promoters of two carboxylases in a C4 plant (maize) direct cell-specific, light-regulated expression in a C3 plant (rice). Matsuoka M; Kyozuka J; Shimamoto K; Kano-Murakami Y Plant J; 1994 Sep; 6(3):311-9. PubMed ID: 7920719 [TBL] [Abstract][Full Text] [Related]
9. Overexpression of Setaria italica phosphoenolpyruvate carboxylase gene in rice positively impacts photosynthesis and agronomic traits. Behera D; Swain A; Karmakar S; Dash M; Swain P; Baig MJ; Molla KA Plant Physiol Biochem; 2023 Jan; 194():169-181. PubMed ID: 36417836 [TBL] [Abstract][Full Text] [Related]
10. In vivo phosphoenolpyruvate carboxylase activity is controlled by CO Abadie C; Tcherkez G New Phytol; 2019 Mar; 221(4):1843-1852. PubMed ID: 30267568 [TBL] [Abstract][Full Text] [Related]
11. Diffusion of CO Alonso-Cantabrana H; Cousins AB; Danila F; Ryan T; Sharwood RE; von Caemmerer S; Furbank RT Plant Physiol; 2018 Sep; 178(1):72-81. PubMed ID: 30018172 [TBL] [Abstract][Full Text] [Related]
12. Physiological investigation of C Zhang C; Li X; He Y; Zhang J; Yan T; Liu X Plant Physiol Biochem; 2017 Jun; 115():328-342. PubMed ID: 28415033 [TBL] [Abstract][Full Text] [Related]
13. Phosphoenolpyruvate carboxylase regulation in C4-PEPC-expressing transgenic rice during early responses to drought stress. Liu X; Li X; Zhang C; Dai C; Zhou J; Ren C; Zhang J Physiol Plant; 2017 Feb; 159(2):178-200. PubMed ID: 27592839 [TBL] [Abstract][Full Text] [Related]
14. Response of transgenic Zhang Q; Qi X; Xu W; Li Y; Zhang Y; Peng C; Fang Y Plant Signal Behav; 2021 Apr; 16(4):1885894. PubMed ID: 33566717 [TBL] [Abstract][Full Text] [Related]
15. Enhanced drought tolerance in transgenic rice over-expressing of maize C4 phosphoenolpyruvate carboxylase gene via NO and Ca(2+). Qian B; Li X; Liu X; Chen P; Ren C; Dai C J Plant Physiol; 2015 Mar; 175():9-20. PubMed ID: 25460871 [TBL] [Abstract][Full Text] [Related]
16. Changes and their possible causes in δ13C of dark-respired CO2 and its putative bulk and soluble sources during maize ontogeny. Ghashghaie J; Badeck FW; Girardin C; Huignard C; Aydinlis Z; Fonteny C; Priault P; Fresneau C; Lamothe-Sibold M; Streb P; Terwilliger VJ J Exp Bot; 2016 Apr; 67(9):2603-15. PubMed ID: 26970389 [TBL] [Abstract][Full Text] [Related]
17. Towards efficient photosynthesis: overexpression of Zea mays phosphoenolpyruvate carboxylase in Arabidopsis thaliana. Kandoi D; Mohanty S; Govindjee ; Tripathy BC Photosynth Res; 2016 Dec; 130(1-3):47-72. PubMed ID: 26897549 [TBL] [Abstract][Full Text] [Related]
18. Physiological characteristics and metabolomics of transgenic wheat containing the maize C Qi X; Xu W; Zhang J; Guo R; Zhao M; Hu L; Wang H; Dong H; Li Y Protoplasma; 2017 Mar; 254(2):1017-1030. PubMed ID: 27491550 [TBL] [Abstract][Full Text] [Related]
19. Improved short-term drought response of transgenic rice over-expressing maize C Liu X; Li X; Dai C; Zhou J; Yan T; Zhang J J Plant Physiol; 2017 Nov; 218():206-221. PubMed ID: 28888162 [TBL] [Abstract][Full Text] [Related]
20. Partial purification and biochemical characterization of a heteromeric protein phosphatase 2A holoenzyme from maize (Zea mays L.) leaves that dephosphorylates C4 phosophoenolpyruvate carboxylase. Dong L; Ermolova NV; Chollet R Planta; 2001 Jul; 213(3):379-89. PubMed ID: 11506360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]